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Abstract

In this master’s thesis a system for deterministic ocean wave simulation
is presented. The target application is interactive multi-client computer
games, where the system can render a visual representation of the ocean
surface as well as provide surface data to other systems, such as a buoyancy
physics simulation. Ocean waves caused by wind above the water surface are
simulated by propagating waves in the Fourier domain, where a Fast Fourier
Transform algorithm is used for efficient computations. Additional larger
individual waves are represented by a basic particle system in an algorithm
inspired by Wave Particles. A prototype implementation was integrated
into an existing system for interactive water waves in the Frostbite engine
developed by EA DICE. The simulation can, with reasonable quality, achieve
sub-millisecond run times on current generation gaming consoles and PC
hardware.



Sammanfattning

I denna masteruppsats presenteras ett system för deterministisk oceanvågsi-
mulering. Målapplikationen är interaktiva datorspel för multipla klienter,
där systemet kan rendera en visuell represenation av havsytan och dess-
utom kan tillhandahålla data till andra system, så som fysiksimuleringar för
flytande objekt. Havsvågor som orsakas av vind ovanför havsytan simuleras
genom vågpropagering i Fourierdomänen, där en algoritm för snabb Fouri-
ertransform används för att uppnå tillräcklig prestanda. Större individuella
vågor representeras av ett partikelsystem där en algoritm som inspirerats
av Vågpartiklar tillämpats. En prototyp har implementerats i ett existeran-
de system för interaktiva vattenvågor i spelmotorn Frostbite, som utvecklas
av EA DICE. Simulering kan med rimlig kvalitet uppnå beräkningstider på
under 1 millisekund på denna generations spelkonsoler och PC-hårdvara.
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Chapter 1

Introduction

When simulating and rendering a physically correct world, sooner or later
one usually needs to address the issue of representing and visualizing a
body of water. Such a body of water may occur in varying sizes and ap-
pearances ranging from small rain puddles to vast stormy oceans. Water
simulations have over the last decades seen numerous takes, both in interac-
tive applications, off-line image generation and simulation of fluid dynamics.
Common to all methods is the aim of achieving a high level of physical accu-
racy while maintaining low computational cost. Simulation with interactive
frame rates, which is the topic of this thesis, is of course more leaned towards
keeping the needed computational effort low and is satisfied with results at
a plausible level.

1.1 Scope
In this thesis, the simulation of ocean waves is discussed, with the target
application being multi-client computer games. The goal is to represent
two types of waves occurring on the ocean surface: ambient waves and
larger individual waves. The ambient waves should provide a simulated
representation of a water surface of oceanic proportions under given weather
conditions. The ability to manually place large individual waves on top of
the simulated surface can be used to design specific gameplay events, for
example a dam breaking or a tsunami.

One use of the simulation results in this application is to render a visual
representation of the water surface. This involves supplying the underly-
ing rendering system with a mesh representation of the simulation results.
Another use is to provide other systems in the application with responses
to water level queries. For example, a physics simulation system may need
such information in order to simulate the motion of an object floating in the
water body.

A multi-client game usually involves a server application in addition to
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CHAPTER 1. INTRODUCTION 2

the clients. It is essential that the water surface affects the game world
equally on all involved clients, including the server. To achieve this, the
ocean surface needs to be fully deterministic across all clients, for any given
point in time. The server and clients are connected via a network, usually
the Internet, which imposes further issues in terms of latency and synchro-
nization, something that also needs to be addressed by the system.

This thesis is focused on finding a suitable model for the problem formu-
lation given above, and presenting a prototype implementation of it. The
main focus is obtaining an efficient implementation of a simulation of am-
bient wind-driven waves that can potentially be incorporated in today’s
games. The implementation of individual wave entities is complemental and
presented as a proof of concept. The implementation will be incorporated
into the Frostbite engine, developed by EA DICE, where it needs to inte-
grate with other sub-systems of the engine. For this reason, the available
resources for the system are highly restricted, which introduces further per-
formance requirements. The ocean wave simulation also needs to integrate
with an existing system for water interaction. The interaction simulation is
local to each client and is used for generating and propagating waves caused
by disturbances of the water surface.

For any component in a game engine it is essential that a high enough
level of control is exposed to the user. The user here is an artist or game
designer, who must be able to tweak the ocean waves to obtain the visual
appearance and game experience they want. Furthermore, it is also impor-
tant to be able to adjust the fidelity of the simulation for devices on both
ends of the performance scale.

1.2 Outline
A brief presentation of previous research in the area is discussed in chapter
2, where a number of different approaches for both ocean wave simulation
and interactive wave simulation are discussed. The restrictions and features
offered by the target system for the reference implementation are presented
in chapter 3. These two chapters are used as a motivation for the chosen
method, which is outlined in chapter 4. The reference implementation of the
method is presented in chapter 5, with the results in chapter 6. Finally, a
discussion on the results and suggestions for future improvements concludes
the report in chapter 7.



Chapter 2

Background

2.1 Fluid Simulations
Any work concerning simulation of fluids is almost obliged to mention the
Navier-Stokes equations. These are a set of partial differential equations
describing the movements of a fluid. The equations are of non-linear nature,
and thus very difficult to solve. In the field of computational fluid dynamics
(CFD) various numerical methods are applied in order to solve the equations.
The methods of CFD are often applicable for off-line simulations of fluid
phenomena and require large amounts of computational power. If interactive
frame rates are the target, the methods from CFD must be discarded in
favour of ones of less computational intensity. As in many other situations
in real-time computer graphics, one is forced to resort to approximations of
more or less severity to get a good balance between computational time and
result plausibility.

As will be shown in this chapter, many of the methods aiming for in-
teractive frame rates reduce the otherwise three-dimensional problem to a
similar one in two dimensions. This reduction means that only waves present
on the water surface are simulated, discarding phenomena such as vertical
flow and turbulence.

Many methods presented here also use a heightfield to represent the wa-
ter surface. A heightfield is a map from a two-dimensional point p to a cor-
responding vertical displacement. As the heightfield is animating, the map
also depends on time, meaning that a function h(p, t) is the mathematical
representation of the heightfield. The heightfield representation introduces
further restrictions, for example the inability to represent breaking waves.

2.2 Ocean Surface Simulation
A well known and early model of the ocean surface was presented by Fournier
and Reeves, which utilizes the theory of Gerstner waves. In the Gerstner
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model, water particles exhibit elliptical stationary orbits around their resting
points. This gives the waves their characteristic shape with sharp crests
and wide troughs [FR86]. The model assumes that the ocean surface can
be described by a sum of a number of such waves. For this reason, as the
number of waves increases the method quickly becomes expensive because
of the need to evaluate a high number of sine functions each frame.

A more intricate solution, which successfully handles a high number of
waves is Tessendorf’s Fourier domain method. His work is based on the
findings of Mastin, Watterberg and Mareda who use a statistical approach
for their model [MWM87]. The model originates in oceanographic research,
in which observations of ocean surface lead to the derivation of a frequency
spectrum for surface waves. Using this method, the wave propagation can
be performed efficiently in the Fourier domain, to be later transformed to
the spatial domain using a Fast Fourier Transform (FFT) algorithm. This
method has been successfully used in both off-line renderings in movies
[Tes04b], and also in interactive applications [Mit07].

Another approach worth mentioning is to use fractal noise to generate
the heightfield. With Perlin noise of different frequencies and amplitudes
a plausible ocean surface can be acquired. In combination with a level of
detail algorithm, Yang et al. used this method for rendering an unbounded
ocean [Yan+05]. This method lacks the foundation of a statistical observa-
tion as the previously mentioned method has. However, as mentioned by
Yang et al., this method has the benefit of being easily implemented while
maintaining low computational cost.

As an extension to the heightfield representation, the method described
by Thüerey et al. successfully simulates breaking waves. By using shallow
water simulations, the characteristic steepening of waves as they approach
a shore or reef is simulated. Then, by detecting and tracking the steep wave
fronts, a set of particles are spawned that can be used to represent a patch
of wave that spills down in front of the wave [Th07].

In most cases only a small part of the ocean surface is visible in screen
space at a given time, yielding it unnecessary to render most of it. A popular
method of limiting the rendered surface is to use a projected grid, which is
described in detail in Claes Johansson’s master thesis [Joh04]. The basic idea
is to use a uniformly spaced grid in screen space, which is later projected onto
the water surface. In world space, this yields a fine grid resolution close to
the viewer, and coarser further away towards the horizon. This approach has
also been used successfully by numerous other researchers [YHK07; CS09].

A good example of a practical application of water simulation techniques
for computer games can be found in Naughty Dog’s title Uncharted. The
method described is highly artist driven, and not so much a simulation
method, but is still interesting because it describes actual production use of
techniques described here. The authors discarded the methods of Tessendorf
described above, with the motivation that the parameters offered by the sim-
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ulation were difficult to interpret and tweak to get the desired appearance of
the water surface. Instead, a few larger Gerstner waves are used to create the
large billowing waves of the ocean, with smaller high-frequency waves super-
imposed on top of those. Other techniques applied involve representing large
individual waves, where a wave-shaped B-spline curve is used to define the
shape of a wave. This wave can then be individually spawned and animated
as desired. Also, a mask encoding flow and local deviations in amplitude is
used for further tweaking of the resulting water surface [GOH12].

2.3 Interactive Water Surfaces
The already present water interaction simulation in the target system of
this thesis’ prototype implementation is based on linear wave theory and
uses convolution to propagate waves over a heightfield [Ott10]. Tessendorf
describes a similar algorithm called iWave [Tes04a], and because of the sim-
ilarities the two methods are comparable in terms of visual and computa-
tional performance [Ott10]. The simulation has been further optimized and
parallelized to run efficiently on current gaming consoles, and use a quadtree
based LOD (Level of Detail) algorithm as described in Lennartsson’s thesis
[Len12].

Also based on linear wave theory, Cords and Staadt describe a method
for highly detailed simulation of interactive waves. They introduce mov-
ing grids to efficiently limit the simulation area, instead of using a LOD
scheme. For rigid-body physics, a particle-based approach is used which
realistically simulates the object-liquid and liquid-object interaction. The
method is combined with the Fourier-based ocean wave simulation method
by Tessendorf to simulate the ambient ocean surface [CS09].

Another useful simulation method is to use the shallow water equations.
These are simplifications of the Navier-Stokes equations making them usable
in real-time applications. Chentanez and Müller describes a method which
is based on these equations. In addition, they use a hybrid approach which
extends the otherwise limiting heightfield representation. By using a particle
based simulation in situations where the heightfield is not enough, breaking
waves, waterfalls, vortices and other phenomena can be simulated [CM10].

Using Lattice-Boltzmann methods originating from CFD, Geist et al.
present a slightly different simulation method. The method employs a two-
dimensional discrete lattice in which mass can flow between neighboring
points. Their wave propagation method uses a collision matrix to encode
how the mass flows between points. In contrast, the previously mentioned
iWave algorithm relies on convolution for propagation but the two methods
are comparable in terms of needed computational power [Gei+10]. The au-
thors implemented their method using the compute capabilities of modern
graphics cards to obtain interactive frame rates.
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A slightly different approach in simulation of interactive surface waves
is the concept of wave particles which was originally proposed by Yuksel,
House and Keyser. This model takes a large number of simultaneous in-
teractions into consideration and successfully simulates phenomena such as
wave reflection with low computational effort. The method involves using
a simple particle system, where the particles represent perturbations on the
water surface. The particles can be treated independently from each other,
meaning large amounts of particles can be present simultaneously in the
system. Using the graphics processor, the particles can be converted to a
heightfield using a simple wave form function [YHK07].



Chapter 3

Overview

This chapter gives a description of the premises for the proposed system.
The local water interaction simulation that the system integrates with is
described, along with existing engine features such as rigid body physics
simulation and networking.

3.1 Local Interactive Simulation
The water interaction simulation consists of a number of steps which are
outlined below. The intention is not to give a full description, but rather
an overview which is needed for the following chapters. The following steps
make up the algorithm, and are described in more detail in the following
sections.

1. Determine which area of the water surface to simulate by considering
the client’s world position.

2. Find which objects are currently inside the volume of water and dis-
place the heightfield appropriately.

3. Animate the heightfield using results from previous steps.

4. Render the total heightfield.

The simulation is run locally on each connected client with no data being
interchanged between clients, and the server does not run the simulation at
all. For this reason it is not possible for the results of this simulation to
influence objects in the global game world, and the results are only used for
local visual effects.

3.1.1 Level of Detail
The simulation requires a discrete grid to represent the heightfield, where
finer resolution grids give a simulation of higher fidelity and the possibility
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to simulate waves with shorter wavelength. However, finer resolution grids
also leads to higher computational cost per area unit of water surface. To
overcome this, it is useful to limit the resolution in areas where the simula-
tion does not add any significant improvement in visual realism. The less
important pieces of surface area are typically ones that are far away from
the client’s point of view. In the existing simulation system the approach
used to implement such a scheme is to equip each simulated body of wa-
ter with a quadtree, which gives a hierarchical representation of the water
body’s surface area. Each node in a quad tree contains a data structure here
called a cell, which represent a square piece of water surface. The root node
of each quadtree is a cell with the same dimension D0, as the entire water
surface. Descendant cells at level i > 0 of the quadtree have the dimension
Di = Di+1

2 .
In order to give predictable memory usage a constant number of cells

is allocated when the system starts. This means that each tree node only
has an implicit cell, and a cell is only explicitly added to the hierarchy
when needed. In each step of the simulation the quadtree is updated by
prioritizing cells according to the client’s point of view. Cells which get a
high enough priority are added to the tree hierarchy, while those with a
priority lower than a user defined threshold are removed. Next, by using
a user defined range of dimensions R = [Ds, 2Ds, . . . , NDs] the simulation
system can attach grids to the cells which have a dimension D ∈ R. These
grid-equipped cells are in a later step those to be considered by the actual
simulation.

A common problem when dealing with LOD systems is popping. This
occurs when swapping between different levels of detail and destroys the
illusion of a seamless mesh or texture. To overcome this, the interactive
water system does not instantly remove or add grids to the hierarchy, but
instead fades the values in the grid towards or from zero over time. This
introduces inertia and the need for frame-to-frame persistence of LOD data.

3.1.2 Heightfield Generation and Propagation
When the grids to use for the simulation have been determined, the next
step is to apply disturbances to the heightfield from the previous step. This
is done by first finding all objects that are currently inside the water vol-
ume. Then, by using the object’s velocity and its approximate shape the
heightfield is disturbed, taking care to preserve the water body’s total vol-
ume. Next, the heightfield is propagated by convolving each grid causing
the waves to animate over time. Extra care is also taken along the borders
of each grid, as the waves generated by a disturbance must be allowed to
travel between grids. For that reason, each grid has a border region which is
copied between neighboring cells. The underlying theory of this procedure
is not in the scope of this thesis, but is discussed in greater detail in the
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works of Ottosson and Lennartsson [Ott10; Len12].
The final step before rendering the heightfield is to apply a bicubic up-

sampling step. This can be seen as adding the results of a low-resolution
simulation to its children of higher resolution. The higher resolution grids
have twice the resolution per area unit which calls for the need of upsam-
pling. Another feature of the existing simulation system is that the borders
of heightfields in quadtree cells which do not have a gridded sibling are lin-
early faded to 0. The intention of this is to avoid gaps in the resulting mesh,
which would otherwise be evident.

3.1.3 Rendering
The very same quadtree based approach as described above is used to obtain
more efficient rendering of the heightfield. A gridded cell with simulation
data is used to create vertices with uniform horizontal distance and with its
vertical position displaced according to the heightfield. The cells which do
not have simulation data will each be rendered as a simple flat quadrilateral
with vertices in the corners of the cell. For rendering purposes the normal
of each vertex is also needed. The approach used by the interactive water
system is to approximate the normals on the GPU. The heightfield resulting
from the simulation is rendered to a two-dimensional texture which is later
used by the shader to compute an approximate surface normal.

3.2 Physics Simulation
Modern game engines often have extensive systems for simulation of physical
phenomena, such as rigid body dynamics. For the purpose of this thesis the
interesting part of the rigid body physics simulation is the module handling
floating objects. Among the information needed by this simulation is the
water surface height h(p, t), where p is a point in world space coordinates
and t is the simulation time. During an update pass of the physics simulation
the function needs to be evaluated for several different points p, which is
proportional to the number of objects floating in the body of water.

3.2.1 Networking and Prediction
In a networked environment, latency is an inevitable problem that needs to
be addressed. Latency can be as high as several hundred milliseconds, which,
if not handled appropriately, will cause unacceptable delays for the clients.
One way of dealing with latency issues is to utilize a client-side prediction
mechanism which can effectively hide such delays. As an example, if a client
issues a command to move forward in the game world, the command would
first need to reach the server, where the position is updated. At a later time,
the updated position is sent to all clients. The delay before the client receives
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the updated position is approximately equal to its round-trip latency to the
server, which is often large enough to be noticeable.

With prediction however, the client instantly predicts the effect of a
command before sending it to the server. Assuming an authoritative server,
there is a possibility that the predicted result is not equal to the correct
result computed on the server. This may occur because of commands from
other clients not having arrived to the client in question yet, and means the
prediction took place with invalid premises. Such a misprediction situation
can be solved in various ways, for example temporally interpolating a po-
sition from the predicted position and the actual position. Implications to
keep in mind when employing the described prediction scheme is that ob-
jects controlled by the local client will live ahead of the authoritative server
time. For the purpose of the system presented here, the implications are that
there is a possibility that the water height function needs to be evaluated
for times in the future with respect to the actual time.



Chapter 4

Method

4.1 Ocean Waves and the Fast Fourier Transform
Given the already present representation of the water surface, the ocean
surface simulation method described by Tessendorf was deemed suitable for
simulation of wind-driven waves in this application. The system in place is
equipped with a quadtree organized set of uniform grids with equal resolu-
tions, making it a good fit for incorporating this method. A heightfield rep-
resentation of the water surface is already in place, and the chosen method
can be incorporated with little interference with the original implementa-
tion. As the method has been used successfully in both movie productions
and games, the method can provide the physical realism required.

For the rest of this section, the theory behind Tessendorf’s method is
described in detail. The theory is also adapted to better fit the implemen-
tation aspects, such as meeting performance requirements, integration with
the present system, and being able to use the simulation deterministically
in a multi-client environment. Another intention of this theoretical section
is to identify and extend the set of simulation parameters available, so that
the system can provide sufficient user control of the simulation.

4.1.1 Features
The method produces a tiled discrete heightfield of the desired resolution.
The tiling feature means that the generated heightfields can be placed side
by side to get a continuous water surface of the desired dimension. However,
if the rendered water surface area is much larger than the tile, the repeating
tile pattern causes unwanted artefacts.

An ocean surface with a high level of realism will need to obtain the
characteristic choppy look of ocean waves. The method can achieve this by
creating an additional two-dimensional displacement field which can be used
to add perturbations to the points of the otherwise uniform grid. Moving
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grid points horizontally towards crests, and thus away from troughs will
simulate this behavior.

The method is also fully deterministic, which is crucial in this applica-
tion. The determinism comes from the fact that for any time t, the resulting
heightfield is only dependent on a fixed set of initial parameters. Also, for
computing a heightfield at time t = t0 no information is needed from previ-
ous results for times t < t0, meaning no frame-to-frame persistence of data
is required.

4.1.2 Notation
The theory described in this section operates in a three-dimensional space,
where the y-axis of the space’s coordinate system is pointing upwards. The
simulated water surface thus lies in parallel with the xz-plane, with the base
water height y = y0. A wave travelling on the xz-plane can be expressed
using a function of a point p = (px, pz) on the plane and the time t:

Φ(p, t) = A cos(k · p− ωt+ θ) ,

where A is the amplitude of the wave, ω is the angular frequency and θ its
phase. In the expression above, the vector k = (kx, kz) is the wave vector,
which points in the waves’ propagation direction and has the magnitude
|k| = 2π

λ , inversely proportional to the wavelength λ. This number k = |k|
is also called the waves’ wavenumber. Using this notation, the water surface
height is the function

h(p, t) = y0 +
∑

k
Φk(p, t) , (4.1)

which is the sum of the base water height and all waves present on the water
surface.

Another convenient notation for waves in general comes from Euler’s
formula. The formula gives an expression for a sinusoidal wave in terms of
complex-valued functions

A cos(ωt+ θ) = Re{Aei(ωt+θ)} = Re{Aeiθ · eiωt} .

In the above, the complex number Aeiθ encodes the amplitude and phase
of the wave, and is commonly called its complex amplitude or phasor.

As stated before, the simulation works by generating smaller areas of
tiling water surface. These tiles are discrete grids with a resolution Rx ×
Rz discrete samples and cover an area of DxDy m2. The resolution and
dimension of the tiles can be chosen depending on application, but for the
rest of this theoretical section a square tile with Rx = Rz = R and Dx =
Dz = D will be used for simplicity’s sake. Also note that, since an FFT
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algorithm will be applied to the discrete grid, it is usually convenient to keep
R a power of two.

The described method works on a discrete heightfield, which is given by
the water surface height function 4.1 evaluated at the points q = D

Rr, where
r = (m,n) is an index vector with m,n ∈ [0, . . . , R− 1].

4.1.3 Wave Distribution
Looking at the expression in 4.1 the summation region is all wave vectors k
present on the water surface. This section describes how to generate a set
of such wave vectors and also how to obtain the corresponding amplitude
and phase. Operating in the frequency domain a wave vector is assigned to
each of the R2 discrete grid points. With m and n being row and column
indices, a wave vector for that grid point is:

kmn = 2π
D

(n− R

2 ,m−
R

2 ) = 2π
D

(l− R
2 ) , (4.2)

where the vectors R = (R,R) and l = (n,m) are used for convenience. The
result of this is a discrete field of wave vectors with the magnitude of the
vectors increasing, and thus with wavelength decreasing, radially from the
center of the field.

Oceanological research has lead to the observation that the complex am-
plitudes for an ocean surface fluctuate spatially in the frequency domain.
The only factor that influence the waves’ fluctuations is the wind veloc-
ity w = (wx, wz). The fluctuations can then be described by the Phillips
spectrum [Tes04b]

Ph(k) = A
e−1/(kL)2

k4 |k̂ · ŵ|2 ,

where A is a scalar constant, the · operator denotes the dot product of
two vectors, and v̂ denotes the unit length counterpart of a vector v. The
dot product term will cause waves travelling in a direction perpendicular to
the wind to be cancelled out, while leaving those propagating in a direction
closer to the upwind and downwind directions.

This spectrum is what will determine the end result of the simulation,
and from a user’s perspective it does not provide many knobs to turn. For
this reason, a slightly altered Phillips spectrum is used in the proposed
system. With this altered spectrum the wave distribution can be narrowed
towards the wind direction, giving a more evident directionality of the waves.
This can be done by increasing the power of the dot product term. It is also
possible to scale waves travelling in either direction, to further increase the
directionality. By defining a scaling function d(x) and power function p(x)
a modified Phillips spectrum is:

P ′h(k) = e−1/(kL)2

k4 C(k̂ · ŵ) , (4.3)
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where C(x) = d(x) · |x|p(x). Here, a simple step function was chosen for the
scaling

d(x) =
{
d+ if x ≥ 0,
d− if x < 0,

and analoguously for the power p(x).
Using the Phillips spectrum for the given set of waves, an initial field of

complex amplitudes can be generated with

h̃0(k) = ξ√
2

√
P ′h(k) ,

where ξ = ξr + iξi is a complex number and i is the complex unit i2 = −1.
ξr and ξi are independent draws from a gaussian distribution with mean 1
and standard deviation 0. This set of complex amplitudes constitutes the
phases and amplitudes of R2 waves on the water surface. These amplitudes
only need to be computed and stored once for the simulation, and are used
in subsequent steps for animating the surface.

4.1.4 Wave Dispersion
To realistically animate water surface waves, the velocity with which a wave
propagates needs to be replicated. The simple property that gives this
behavior is concluded in the dispersion relation for water waves [Tes04b],
which couples a waves’ wavelength to its angular frequency. Using the above
notation the relation comes down to:

ω2(k) = gk tanh(kd) ,

where d is the water depth and g is the gravitational constant. For the
open ocean where d is usually very large compared to the wavelength, the
hyperbolic tangent term will approach 1, yielding the even simpler relation

ω2(k) = gk .

For the purpose of this simulation this means that for any wave k, the angu-
lar frequency and thus the propagation velocity is given, and also constant.

Now, using the dispersion relation, the complex amplitudes for a given
time t can be computed with

h̃(k, t) = h̃0(k)eiω(k)t + h̃∗0(−k)e−iω(k)t . (4.4)

Here, ∗ denotes the complex conjugate operator. This expression maintains
the reality condition for Fourier transforms, which states that if a function
is strictly real-valued, the imaginary part of the Fourier transform exhibits
odd symmetry:

Im {f(t)} = 0 ⇒ F (−s) = F ∗(s) ,
where F (s) = F {f(t)} (s), and F is the Fourier transform.
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4.1.5 Transforming
The results so far are still in the frequency domain, and need to be trans-
formed to the spatial domain in order to evaluate the water surface height
function 4.1. This transformation is obtained by [Tes04b]

h(q, t) =
∑

k
h̃(k, t)eiq·k , (4.5)

which closely resembles the definition of the inverse 2-dimensional Discrete
Fourier Transform (DFT) of size N ×N

fk = 1
N2

∑
n
Fne

i 2π
N

k·n ,

where the sum is nested over both indices n = (m,n), m, n ∈ [0, . . . , N−1].
Recalling the expression for k in equation 4.2 and that q = D

Rr, equation 4.5
can be rewritten to instead use the summation variable l, and parameter r.
With this substitution, the expression is in fact the DFT, with a shift of R2
in each dimension of the input signal.

h(q, t) =
∑

l
h̃(q, t)ei

2π
R

r ·(l−R
2 ) =

=
[∑

l
h̃(q, t)ei

2π
R

r·l
]
e−iπ

R
R
·r .

By further expansion, and using that e−iπ = −1 and R
R = (1, 1) the shifted

input is compensated for by multiplying with an alternating sign factor
(−1)m+n:

h(q, t) =
[

1
R2

∑
l
h̃(k, t)ei

2π
R

r·l
]
R2(−1)(m+n) =

= F−1
{
h̃(k, t)

}
R2(−1)(m+n) .

(4.6)

4.1.6 Additional Data
By using even more Fourier transforms, additional required data can be
obtained [Tes04b]. To be able to render the heightfield it is essential to
have access to the surface normals of the heightfield. Recalling the Fourier
transform of a functions derivative

F
{
f ′(t)

}
(s) = 2πis F (s) ,

and applying this to the field of complex amplitudes

∇h(q, t) =
∑

k
ik h̃(k, t)eik·q ,
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yields the partial derivatives in the x and z directions. Having obtained the
derivatives, the surface normal at the grid point q is

n(q, t) = (−∇hx(q, t), 1,−∇hz(q, t)) .

Finally, to obtain the choppy look of ocean waves, the horizontal dis-
placement vectors also need to be computed. Again, by using even more
Fourier transforms, the two-dimensional displacement vector field is com-
puted with

D(q, t) =
∑

k
−ik̂ h̃(k, t)eik·q .

The final horizontal position of the grid points is thus q + D(q, t). A
pitfall when computing the displacement field is that it is possible for the
displacement of adjacent points to overlap. While it is possible to detect
such situations, the simple solution is to bias the displacement with a factor
λ which can be set by the user, yielding q + λD(q, t).

4.2 Wave Entities
To represent large individual waves an algorithm inspired by the wave par-
ticles, as proposed by Yuksel et al. was selected. While the method is
originally proposed as a simulation method for interactive water surfaces
[YHK07], the method has features which makes it suitable in this situation
as well.

4.2.1 Particle System
For representing the waves on a water surface a very simple particle system is
used. For efficiency reasons, the particles do not interact with other particles
in the system and most of a particles’ properties remain constant during its
lifetime. An advantage to draw from this, is that if the initial position p0
for a particle is known, the position at any other time t > t0 kan be easily
determined with

p(t) = p0 + (t− t0)v , (4.7)

where v is the velocity of the particle. This makes the behavior of each
particle completely deterministic over time. Another advantage to exploit
from this is that there is no need to update each particle position every
frame. Instead, the position is computed as needed with the expression in
4.7, greatly reducing the number of memory writes [Yuk10, p. 89].

The properties needed for finding the position of each particle is thus
initial position, creation time and velocity. Furthermore, the wave particles
must maintain two more properties: amplitude and radius, which define the
shape of the wave as the particles are later converted to the height field.
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lt

dtα v

Figure 4.1: Approximation of time for subdivision event for particle with
velocity v and dispersion angle α.

Also, to represent expanding wavefronts, another parameter is introduced
which is the dispersion angle of a particle. For radially expanding waves,
new wave particles must be spawned in order to preserve the shape. The
distance between particles on the same wavefront should optimally never ex-
ceed half the particle radius [YHK07], which is why subdivision of particles
is necessary. Naïvely approached, the problem of finding subdivision candi-
dates can become expensive and introduce dependencies between particles.
A better approach is to instead treat every particle independently, which
can be done by introducing a few assumptions regarding particle proper-
ties yielding an efficient analytical solution. Considering a particle on a
wavefront with speed v = |v|, dispersion angle α and radius r, the distance
travelled by the particle in t seconds is lt = t v. The length of the arc given
by the angle α and a circle of radius lt is dt = αlt = αtv, and is a rough
approximation of the distance between two neighboring particles, see figure
4.1. Solving for t with dt = r

2 yields the time of the subdivision event:

r

2 = α t v ⇔ t = r

2 vα .

From the acquired time the subdivision event can be scheduled, removing
the need for finding candidates each update. The subdivision means three
particles will spawn, one at the original particle’s position and two on each
side of that. The dispersion angle and amplitude of the new particles are one
third of the original, and the direction of the new outer particles is rotated
by α

3 and −α
3 respectively.

4.2.2 Particles as a Heightfield
Having subdivided particles accordingly, the particle system needs to be
turned into the heightfield representation discussed earlier. This can be done
by properly selecting a waveform function Wi(x), yielding the heightfield
function

h(p, t) = y0 +
∑
i

aiWi(p− pi(t)) ,
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where ai is the amplitude and pi(t) is the position of wave particle i. Yuksel
et al. suggests using the following waveform function

Wi(x) = 1
2

(
cos

(
π|x|
ri

)
+ 1

)
Π
( |x|

2ri

)
,

where Π(x) is the rectangle function with Π(x) = 1 for −0.5 < x < 0.5,
Π(x) = 0.5 for x = ±0.5 and 0 otherwise. For simplicity’s sake it is
usually convenient to keep a constant radius ri = r, which also gives a
constant waveform function Wi(p) = W (p). With this simplification Yuksel
et al. describe how to perform the heightfield conversion efficiently using
a convolution on the GPU. Each particle is rendered as a point primitive
to a render target, which is later filtered with the waveform function as
a kernel. The filtering can be further optimized by using one-dimensional
approximations in each direction of the otherwise two-dimensional filter.

To obtain the choppy look of waves, just as with the method described
in the previous section, a two-dimensional vector field can be obtained for
displacing the horizontal position of the heightfield. This field is given by

D(p, t) =
∑
i

Li(vi)aiWi(p− pi(t)) ,

where
Li(u) = − sin

(
π|u|
ri

)
Π
( |u|

2ri

)
û

4.2.3 Water Interaction
To use the described particle system for simulating water interaction, wave
particles with proper amplitude and velocity must be spawned accordingly.
The authors of the wave particle algorithm describes how to accomplish this
by using a GPU-based technique. As the wave entities described in this
thesis will be primarily artist generated, these techniques are not in the
scope of this thesis.



Chapter 5

Implementation Details

This chapter is meant to give a description of the implementations of the
algorithms presented earlier. Various aspects of rendering the ocean surface
are also discussed. The implementation here refers to a reference imple-
mentation made in the Frostbite engine and running on a PC under the
Microsoft Windows operating system, and on Sony’s Playstation 3 gaming
console. The reference implementation was integrated with an existing sys-
tem for water interaction, but the simulations are not tightly coupled and
could be enabled and disabled independently. A simple prototype for quick
experimentation with the chosen method was also implemented in Matlab.

5.1 Overview
Combining the two different techniques discussed in chapter 4, the simulated
wind driven waves and wave entities can be superimposed to form the final
heightfield function

H(p, t) = y0 +
∑
k

h̃(k, t) eip · k +
∑
i

aiWi (p− pi(t)) . (5.1)

The reference implementation consists of one system for the server and
one for the client. The two implementations contain significant differences,
but as it turns out much of the code from the server-side can be reused on
the client. The only information that the server needs to provide is water
heights for different points in time and space, or more precisely, evaluations
of the function in equation 5.1.

The client system needs to provide the exact same functionality as the
server, but additional work is also needed which is related to rendering. It
is assumed that the heightfield queries arrive at a different frequency than
the rendering frame rate, and for that reason the simulation data for wind-
driven waves used for queries and rendering are computed separately. This
means more computations on the client, but has the advantage that the two

19
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sets of simulation data can be processed with different parameters. One
example of where this advantage is used in the reference implementation,
is that the simulation data used for physics queries does not need surface
normals, nor is it equipped with any horizontal displacement data. As the
simulation data used for rendering has a horizontal displacement, there will
be a discrepancy between the water height returned by the queries and the
rendered mesh.

For easy integration with the interactive water system, the LODing of
the rendered heightfield use the same quadtree based approach. To be able
to use this approach, the heightfield obtained from the simulation will need
to be resampled to lower resolutions. In the reference implementation 3–
4 LODs were used. As mentioned in section 3.1.2, the grids used by the
interactive water simulation have a border region on each side. This border
is not used while rendering the heightfield, which means that for a border of
size B a mesh representation of such a grid has only (R−2B+1)×(R−2B+1)
vertices. Here the +1 comes from the fact that the borders of the mesh must
match for tiling purposes. In order for the data from both simulations to
match, a scaling of the ocean simulation data is applied for it to fit the
unbordered grid area. The scaling uses bilinear downsampling to reach the
desired resolution, which is later copied to fill an entire R × R grid, with
maintained border properties.

For the simulation of wind-driven waves, the theory from section 4.1 is
used to form the following algorithm:

1. Construct an R×R field of wave vectors k

2. Compute Phillips spectrum P ′h(k)

3. Compute initial amplitudes h̃0(k)

4. Apply dispersion relationship ω(k) to get h̃(k)

5. Transform to spatial domain to get heightfield h(p, t)

Items 1 to 3 is the initialization part of the algorithm which only needs to
be executed once any of the parameters change. The subsequent steps are
performed on each update step of the simulation.

5.2 Simulation Tasks
To fully utilize the multi-core architectures of modern PCs and gaming con-
soles, the simulation splits its workload among a number of tasks. At every
update step of the simulation, the jobs are started to later be synchronized
before the rendering is done. The ambient wave simulation has been split
into three different tasks: update, precomp and prepareLod, and an addi-
tional initialization procedure. The prepareLod task is only used by the
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client simulation. For updating the wave particle system a subdivision task
is also required, this task is however run on the main thread because of the
ability to implement it very efficiently.

Running the tasks on a Microsoft Windows PC involves starting a thread
which executes the task’s code. By relying on the operating system’s schedul-
ing the multiple threads can be allowed to run in parallel on a multi-core
processor. To avoid the overhead of spawning new threads, a pool of worker
threads can be used.

The architecture of Sony’s Playstation 3 is slightly different though, and
multi-threading will not cause significant performance improvements com-
pared to running all task in sequence on the same thread. The Playstation
3’s is equipped with a Cell processor, consisting of one Power Processor
Element (PPE) and 8 Synergetic Processor Elements (SPE). The PPE is
a 64-bit PowerPC, reduced instruction set computer (RISC), which runs
the operating system and controls the SPEs. The SPEs are 128-bit RISC
processors designed for smaller data-rich processing tasks and are the main
workhorses of the platform. Each SPE executes its instructions on a local
memory store, in contrast to the PPE which operates on main memory.
To transfer data back and forth between the local store and main mem-
ory, the SPEs use direct memory accesses (DMA), which can be performed
asynchronously to reduce latency [CBE09].

To utilize the SPEs for the simulation, each task needs to be compiled
into a separate small program that are started on each update step. The
memory addresses of the data to be processed are passed as parameters to
the programs, and by using DMA, the data is read from main memory into
the local storage. After the processing is complete, the data is written back.

5.2.1 Initialization
The initialization task takes the user-defined parameters and computes an
initial field of complex amplitudes and a dispersion field. This task needs
only to run once when the simulation starts, and if any of the parameters
change. Because of this, the task has not undergone any optimizations in the
reference implementation as there are no critical time limits to meet. The
reason for also outputting the dispersion field is that, while the expression
looks harmless, it does contain two square root operations for each wave
vector k, if one were to compute it as needed. The set of wave vectors
is constant as long as the parameters remain unchanged, which yields the
opportunity to pre-compute this data.

For the simulation to be deterministic, the initialized data needs to be
precisely equal on all involved clients and on the server. The computation of
the initial heightfield draws from a random number generator which, for the
equality to be fulfilled, must be identical. In this implementation a seeded
pseudo random number generator is used, with the seed being part of the
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common simulation parameters that are of course identical on all clients.

5.2.2 Updating the Heightfield
The update task contains two distinct computational sub-tasks, where the
second depends on the results of the first. The first task consists of applying
the dispersion to the initial grid of complex amplitudes h̃0. The dispersion is
done according to equation 4.4 and the dispersion relationship ω(k). Because
equation 4.4 maintains the complex conjugation property, the bottom half
of the resulting set of amplitudes h̃(k, t) will be the complex conjugate of
the horizontally and vertically flipped upper half. By exploiting this fact,
the number of needed iterations for this procedure is R2/2.

To guarantee identical results between clients, the clocks used for sim-
ulation must be synchronized between server and clients. This is handled
by the underlying networking system of the engine and not part of this im-
plementation. It works by having each client separately maintain its own
timer, which are continuosly corrected by the server, should it start to drift.
A time correction from the server may cause unexpected jumps in the sim-
ulation time for a client and thereby a jump in the heightfield animation.
To avoid such jumps, the clock is not instantly skipped to the correct time
when a correction arrives, but instead accelerated by a factor proportional
to the time error.

The second sub-task is to transform the results from the previous task to
the spatial domain. This is done using an FFT algorithm, discussed further
in section 5.5. In total, 5 inverse FFTs are performed where one produces
the heightfield, two are used for horizontal displacement, and the last two
are for the computation of surface normals.

5.2.3 Precomputation of Heightfields for Point Sampling
To accommodate for the point sample queries of the water surface height,
this task precomputes heightfields and stores them for later use. This per-
forms a subset of the operations in the update task, where only the height-
field is computed with no additional horizontal displacement or normal data.
This means only one inverse FFT operation is executed for each instance
of the precomp task. The buffering scheme is described in more detail in
section 5.3.

5.2.4 Level of Detail Preparation
The prepareLod task is a preparation of the data before rendering the
heightfield. The task uses the data which is output from the previously
described update task to prepare a single LOD of lower resolution. This
task performs the down-sampling described in the overview section above to
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Figure 5.1: Downsampling and border copy of original heightfield of resolu-
tion R to level of detail l = 1. The original heightfield is down-sampled and
stored in the upper left region of the target heightfield. Next, it is copied to
the remaining three regions and the lettered sub-regions are copied to the
corresponding area of the border

reach the desired resolution

Rtarget = R− 2B
l + 1 ,

where l is the requested LOD and l = 0 is the highest resolution LOD.
After obtaining the low-resolution heightifield it is copied to fill the topmost
row of the R × R tile. Next, that row is copied to fill the rest of the tile.
While doing so, the borders are also copied to preserve the same data layout
as used by the interactive simulation. This procedure is depicted for l = 1
in figure 5.1. The LOD preparation tasks can run in parallel with one task
instance per LOD, as there are no dependencies between them.

5.3 Heightfield Sampling
It is assumed that for a point in time t0, the water height may be queried for
a range of times t0−S ≤ t < t0 +S, where the times are discrete, uniformly
spaced time steps. To quickly be able to respond to such queries, the system
maintains a buffer of heightfields from past and for future time steps instead
of computing them on-demand. The maximum time tmax for which a query
has been answered is recorded, and with a buffer of size 2S, the buffer ensures
that the heightfields for times tmax−S ≤ tmax < tmax +S are in the buffer.
If the initial assumption holds, a sufficiently large buffer will guarantee that
all the heightfields needed to respond to the queries are already in the buffer.
However, to be safe, a fallback on-demand computation of a heightfield can
be made if needed. At every update step of the simulation, tmax − tbuf new
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heightfields are computed and buffered, where tbuf is the maximum time of
all currently buffered heightfields.

Simply fetching a buffered heightfield is not enough to respond to a
query. As a query is made for an arbitrary point p in space, the heightfield
fetched from the buffer needs to be sampled in some fashion. First of all, if
the point is outside the bounds of the entire water surface, no further work
is needed and the sampling procedure is complete. If it is inside, the offset
position into the water surface is determined with ps = p− p0, where p0 is
the corner position of the entire water surface. This position is then used
to compute the position in the tile’s coordinate system q = R

Dps. The final
water height is finally bilinearly interpolated from four samples from the
discrete grid points closest to q.

Superimposing individual waves is performed by simply iterating over all
active wave particles and summing evaluations of their waveform functions.

5.4 Simulation Parameters
There are several parameters that affect the outcome of the ocean simulation.
Some parameters influence the general appearance of the surface waves while
others can be used to adjust fidelity. Increasing fidelity, as usual, also means
increasing computational cost and thereby decreasing performance.

The first two parameters to set are the simulation resolution and dimen-
sion. The resolution of course has a direct relation to the computational
cost. The implication of choosing a higher simulation resolution is that
more wave vectors will fit into the grid. The increased number of wave vec-
tors will expand the heightfield outwards, and thus give waves with higher
wave numbers. Recalling that the wave number is inversely proportional
to the wavelength, this will give more small surface waves. A resolution
above around 2048 × 2048 will give such small wavelengths that numerical
precision becomes an issue [Tes04b]. During the work of this thesis the reso-
lutions were usually set to 64×64 or 32×32. The dimension parameter only
controls the size in the world that a simulation tile covers and thus does not
add any additional computational costs for the simulation.

The modified Phillips spectrum in equation 4.3 provides an additional
four parameters that can be set by the user. Upwind and downwind power,
controls how much the propagation directions of waves will be spread out
around the wind direction. Upwind and downwind scaling factors controls
the amplitude of waves travelling in the corresponding direction.

5.5 The Fast Fourier Transform
Evaluating a DFT by definition, while maintaining interactive frame rates,
is infeasible as the complexity of such an operation is O(N2) in the one-
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dimensional case and at best O(N3) in two dimensions. Instead we resort
to an FFT algorithm, such as the traditional one, proposed by Cooley-
Tukey. This effectively reduces the complexity of the problem to a more
manageable O(N logN) in one-dimension and thus O(N2 logN) in the two-
dimensional case [FJ05]. For the first prototype implementation a simple,
yet naïve, implementation of the Cooley-Tukey algorithm was used to verify
the results. However, this unoptimized implementation still did not provide
sufficient performance, especially on consoles, which led to the use of a third-
party library specialized for FFT computations.

5.5.1 Using FFTW
The problem faced in this thesis is to efficiently compute a transform of fixed
and moderate size. For this reason it would be possible to write low-level
optimized code that is tailored for that particular problem. This solution
however, is not very flexible. As mentioned, it is desirable to be able to
adjust simulation fidelity depending on platform, which means lots of work
needs to be put into writing similar low-level optimized code for those prob-
lems as well.

For these reasons a more flexible solution, to use the third-party library
FFTW, was chosen. FFTW stands for The Fastest Fourier Transform in
the West and is a collection of C routines released both under the GNU
GPL license and other non-free proprietary licenses. FFTW works with a
set of codelets, which are machine generated code sequences, specialized on
performing one particular set of computations. By testing different combi-
nations of the codelets, FFTW can find an optimal solution for the given
problem. The speed of computations is comparable with “hand-optimized
solutions” [FJ05]. With the FFTW software package, it is also possible to
generate new codelets if needed.

5.6 Wave Particles
5.6.1 Particle Data
To avoid runtime allocation of memory on the heap, it is necessary to main-
tain a buffer of constant size for the particle data. Each particle carries a
property which tells if it is active and should be included in the simulation.
To avoid searching the buffer for available particles when spawning new ones
a simple wrapping counter tells the next index to choose. This will cause
particles, which are potentially still alive, to be overwritten. However, the
buffer can be maintained to keep the particles roughly sorted by creation
time, meaning the overwrites will only hit old particles.

The data needed for each particle is: creation time, initial position,
direction, amplitude and dispersion angle. A choice can be made whether
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to allow varying particle radii or use a constant global value. Allowing
individual radius properties, in combination with waveform evaluation using
a convolution kernel is problematic. This would need numerous convolutions
with different kernels and would significantly increase memory usage. The
reference implementation does not use convolution, which allows the use of
individually set radii.

5.6.2 Subdivision
The subdivision time table of the wave particle system can be implemented
efficiently by choosing the right data structures [Yuk10, p. 90-92]. In the
reference implementation, a map data structure was used to map the time
of a subdivision event to a list of particles. To avoid dynamically allocating
memory for the particle lists, a linked list structure was used. By equipping
the particle data with a pointer to the next particle, this scheme is readily
implemented. Thus, the time table is a map from discrete time step to a
wave particle pointer, pointing at the tail of the subdivision list.

Ideally, all particles subject for subdivision at a point in time should be
ordered sequentially in memory to improve memory access times. Subdi-
viding a particle, involves creating two new particles on either side of the
original one, which is not optimal for memory layout. To overcome this, the
original particle is relocated to where the two new particles are created in
the memory buffer. This also reduces the risk of overwriting particles before
it has been subdivided [Yuk10, p. 94].

5.7 Rendering
The heightfields obtained from the simulation of wind-driven waves are well
suited for the already present rendering. As described in section 3.1.1, the
quadtree structure will provide a number of grids of equal resolution, but
different dimension. To apply the height field, the different LODs of the
simulation data can be matched with a quadtree level, giving a range of
levels of where to superimpose the heightfield. The level matching can be
performed by finding the quadtree level which has grids of a dimension which
most closely matches the dimension of the simulation data. An example
quadtree hierarchy is depicted in figure 5.2. To apply the height field to
grids below the range of levels, the present system’s upsampling algorithm
is used to bicubically upsample the data from the level above.

To render the wave particles, a naïve solution would be to for every
vertex in every mesh grid evaluate the waveform function for every wave
particle. This solution was deemed too expensive, which lead to a more effi-
cient, yet still naïve, two-pass solution. By first determining which particles
affect which grid, the complexity is reduced. Considering a wave particle’s
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Figure 5.2: Example quadtree hierarchy for a water surface. Using 2 LODs,
the simluation data for wind driven waves would be inserted at the levels
shaded with gray color, with the highest LOD in the grids of the bottommost
of these levels. For quadtree levels below the LOD range, the data from
above levels are upsampled to fit the grids.

position and the inflated two-dimensional bounding box of a grid, a point-
box intersection test can tell which particles affect a given grid. The bounds
of a grid must be inflated by the constant particle radius r in each direction
to successfully cover the influence of all particles, which is exemplified in
figure 5.3. All particles affecting a grid is appended to a list, which in the
second pass provides each grid with the particles to consider. The second
pass is also easily parallelized, for further performance increase.
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Figure 5.3: Example grid sampling of a wave particle system with two
particles: P0 and P1, and the grid shaded in gray. The outer square repre-
sents the inflated bounding box which is needed to catch influences from all
relevant particles.



Chapter 6

Results

This chapter presents the results of the implementation of the algorithms.
The default set of parameters used, unless otherwise stated, is shown in
table 6.1.

Resolution R = 512
Dimension D = 1500 m
Wind direction ŵ = (wx, wz) = (1, 0)
Wind speed |w| = 30 m/s
Directionality p− = p+ = 2
Scale factor d− = d+ = 1

Table 6.1: Default simulation parameters used for the results presented in
chapter 6.

6.1 Renderings
Using a 2-dimensional grayscale image, the heightfield and horizontal dis-
placement maps can be represented. Such a representation is shown in figure
6.1. Observing only this representation, it is not clear in which direction the
waves are propagating. But, by also taking the derivatives into account, the
direction becomes more evident. Similar renderings of the derivatives in the
x and z directions, along with the resulting normal map are shown in figure
6.2.

The final result can be seen in figure 6.3, where an entire water body is
rendered with basic shading. Looking closely at this figure, cracks can be
noticed between different LODs as the border vertices of the mesh patches
does not match. A repeating pattern is also evident caused by the tiled
heightfield with a rather low resolution. The rendering in figure 6.4 shows
the wireframe of the same water body.

29
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(a) (b) (c)

Figure 6.1: Example two-dimensional representations of (a) height field,
(b) horizontal displacement in x direction, and (c) horizontal displacement
in z direction. The parameters used are those presented in table 6.1.

(a) (b) (c)

Figure 6.2: Heightfield derivatives rendered as a two-dimensional map. (a)
is the x derivative, and (b) the z derivative. In (c) the resulting normal map
is rendered in color with the red, green and blue channels representing x,
y and z components respectively. Simulation parameters are listed in table
6.1.
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Figure 6.3: Rendering of ocean surface with basic shading. The heightfield
resolution used was 64 × 64 which explains the obvious repeating pattern
caused by tiling. Cracks between different LODs are also evident on closer
examination.

Figure 6.4: Wireframe rendering of the same water body as in figure 6.3.
As shown in the rendering, 4 LODs are used.
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PC PS3
Task 32× 32 64× 64 32× 32 64× 64
update 0.08 0.29 0.12 0.33
Propagation 0.06 0.21 0.08 0.24
Transform 0.02 0.08 0.04 0.09
prepareLod 0.05 0.06 0.06 0.07
precomp 0.05 0.15 0.06 0.16
Propagation 0.04 0.12 0.04 0.12
Transform 0.01 0.03 0.02 0.04
Frame time ( 1

f ) 7.69 10.0 33.3 33.3
Simulation CPU Time 0.29 0.58 0.42 0.77
Wall clock time 0.13 0.35 0.18 0.40

Table 6.2: Timing measurements (in milliseconds) for each of the simulation
tasks and sub-tasks. On Playstation 3 (PS3), all tasks are executed on the
synergetic processing elements (SPE). The query frequency is fq = 30 Hz
and LOD count l = 4. Simulation CPU Time is computed by the formula
in 6.1, and wall clock time according to 6.2.

6.2 Performance
Apart from fulfilling the requirements of deterministically generating a plau-
sible mesh representation of an ocean surface, a key factor of a successful
implementation of this method is performance. In table 6.2, processor time
for one instance of each of the simulation tasks and sub-tasks is presented
for different resolutions, and on two different platforms: a Sony Playsta-
tion 3 and a PC. The PC was equipped with an Intel Xeon X5550 with 4
cores at 2.66 GHz and 12 GB of RAM. The number of LODs used during
measurements was l = 4, and the used query frequency was fq = 30 Hz.

On the client, the number of task instances of each task that is run every
frame is variable. This is due to the possibility of the frame rate f being
different from the frequency of the heightfield queries fq. This means that
for each frame, precisely one instance of update task needs to be executed,
together with one instance of prepareLod per LOD. The most common
situation in the reference implementation is that f ≥ fq, which means that
one instance of the precomp task executes roughly every f

fq
frame. The total

CPU time spent can thus be computed with the formula

tcpu = tupdate + l · tresmaple + f

fq
tprecomp , (6.1)

where l is the LOD count and ttask is the CPU time for task.
The wall clock time that is needed for the entire simulation can be com-
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puted with the following formula:

twall = max(tprecomp, tupdate + tprepareLod) . (6.2)

This means that the wall clock time is whichever finishes last of one instance
of the precomp task and one instance of update together with one instance
of prepareLod. The assumption is made that the tasks are allowed to run in
parallel, meaning that precomp and update can be started at the same time.
Also, all prepareLod tasks can be executed in parallel, yielding the above
expression. Note that the prepareLod task can vary slightly in run time
depending on which LOD it is computing. These differences were however
considered negligible in the performed measurements.

On the server-side the total CPU time and wall clock time are tcpu =
twall = tprecomp, since only one instance of the precomp task is executed every
update step.

6.2.1 Performance Improvements from Using FFTW
Replacing the naïvely implemented FFT algorithm significantly improved
performance on all tested platforms. For a simulation resolution of 64× 64,
the measured CPU time on PC for the naïve algorithm was 0.55 ms per
transform. With FFTW, the corresponding time was improved with one
order of magnitude to 0.05 ms. Similar improvements were also evident on
the other platforms.

It should be noted, that while there is a gain in performance, static link-
ing with the FFTW library will lead to increased code size of the executable.
This could potentially be alleviated by extracting or generating the needed
FFTW codelets, and thus only link with those. While sacrificing flexibility,
this solution could be used to produce a small amount of high-performance
code that is tailored for the given problem and platform. This could poten-
tially also improve performance even further, making it a viable option for
final builds of an application as the flexibility offered can be discarded at
that point.

6.3 Modified Phillips Spectrum
The alternative Phillips Spectrum in equation 4.3 was implemented to in-
crease the user’s level of control over the simulation. In figure 6.5 three
example spectra are represented as two-dimensional grayscale images. With
white color representing high amplitudes, the figure 6.5 (a) show that the
maximum amplitudes in the spectrum are in the upwind, and also in the
downwind direction for the default spectrum. The spectrum is tweaked with
increased directionality in figure 6.5 (b), and with downwind amplitudes
scaled down in figure 6.5 (c).
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(a) (b) (c)

Figure 6.5: Three different spectra generated with the modified Phillips
spectrum with resolution, dimension and wind direction as specified in table
6.1, but with wind speed 5 m/s. White color represents high amplitudes. (a)
Default parameters, s− = s+ = 1 and p− = p+ = 2. (b) Increased power,
p− = p+ = 8. (c) Scaled amplitudes in downwind direction p− = 3, p+ = 8
and s− = 0.2, s+ = 1.

6.4 Wave Entities
As the reference implementation of a wave particle does not strive for high
performance, no detailed performance measurements were conducted on this
algorithm. For completeness sake, with a maximum particle count of 4000,
a parallelized waveform evaluation step, performs in roughly 5 – 6 ms wall
clock time on modern PC hardware. Other steps of the algorithm can be
implemented very cheaply and does not add significant cost.



Chapter 7

Discussion

7.1 Ocean Wave Simulation Using FFT
The presented solution provides a deterministic ocean wave simulation, which
is feasible for integration into a real-time application. The simple, yet ef-
fective, heightfield representation is well suited for this application as both
rendering work and individual point queries can be performed efficiently.

7.1.1 Performance
The measurements presented in chapter 6 show promising results in terms of
performance. The performance level obtained indicates that a simulation of
higher resolution is possible, without significant reduction in overall frame
rate. Higher resolutions were not experimented with during the work of this
thesis, mainly because of limitations imposed by the underlying interactive
water simulation.

The re-sampling and LOD preparation task and the wave propagation
task have not undergone significant optimization in the reference implemen-
tation. Both these tasks are candidates for vectorization and to thereby put
the platforms’ single-instruction, multiple data (SIMD) capabilities to use.

7.1.2 Spectrum Tweaks
The modified Phillips spectrum gives the opportunity for artists to better
control the simulation so that the desired appearance can be achieved. Mod-
ifying the spectrum does diverge the method from its foundation in studies
of actual ocean surface, but in this application the ability to control the sim-
ulation was deemed more important than maintaining the highest possible
level of realism.

A problem with the chosen method, is that directly modifying the spec-
trum can be difficult for someone not well versed in the used method. The
implications of a tweak applied by a user can have consequences on the end
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result that are difficult to predict, making it a time consuming process to
find the right parameters [GOH12]. However, the modified Phillips spectrum
is intended to alleviate the customization process.

7.1.3 Parameter Changes
The proposed method is not well suited for changes in the parameters. Pa-
rameters that are candidates for runtime changes are the wind speed and
direction, whereas the resolution and dimension parameters should be kept
constant. A change in wind direction or speed would not be instant, but
rather a transition over a period of time. A transition in parameter values
means that the heightfield needs to be reinitialized for numerous different
sets of parameters, which is an expensive effort and could potentially cause
jumps in the animation of the heightfield. A better solution would be to,
as the parameter changes, initialize a new temporary simulation with the
target parameters and blend it in linearly over time. This would cause a
smooth transition, with only one needed reinitialization but with twice the
required computational effort during the transition.

7.1.4 Shores
As the simulation is meant for the open ocean, practical handling of shore-
lines is an issue that needs to be addressed. In particular, when a rough
ocean surface is simulated, a gently sloping shore will cause very unrealistic
behavior. If the simulation has the ability to access the geometry that repre-
sents the seabed, a simple solution would be to locally apply a water depth
dependent scale factor to the heightfield. Experiments have shown that by
blending with another procedural wave generator, which is specialized on
shore waves, a more realistic shoreline can be obtained.

Another solution, which does not require access to the seabed geometry,
is to use an artist painted mask that encodes the scaling factor applied to the
heightfield. The mask could potentially encode other data, such as a flow
map, providing further simulation control to the user. With flow data, the
simulation could also be used to represent larger rivers and the transition
between water bodies. Flow maps could also be generated from the terrain
geometry, but as this is likely a costly procedure this data generation would
need to be done in a pre-processing step.

7.1.5 Tiling Artefacts and Cracks
A tile which is much smaller than the total area of viewed water surface can
make tiling artefacts evident. Of course, by increasing the tile dimension,
this problem could be alleviated. This would however lead to the need for
higher simulation resolution in order to maintain the detail provided by the
high-frequency waves.
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To keep computational cost down, a potential solution would be to per-
form two heightfield computations of the same resolution but at different
dimension. The heightfield of larger dimension could be linearly up-sampled
to form a higher resolution heightfield. Several of the smaller heightfields
could then be superimposed on the larger to form the final result. The larger
heightfield would break up the tiling artefacts created by the smaller. This
technique could of course be further extended to use as many heightfields as
desired. This would however burden users with more parameters to adjust,
to obtain the right appearance.

As is evident from the rendered ocean surface in figures 6.3 and 6.4,
vertices along borders between different LODs does not line up correctly,
causing cracks in the resulting mesh. A solution to this is to apply some
form of stitching along the edges, which is a common method of dealing with
such problems.

7.1.6 Heightfield Sampling Discrepancy
As mentioned in the implementation chapter, the heightfield queries will not
provide query responses that exactly match the rendered mesh. By equip-
ping the buffered heightfields with horizontal displacement information, the
queries could be made more exact. However, this would not only mean more
complicated sampling of the heightfield, but also more memory usage by the
buffer.

In the reference implementation, this discrepancy has not been found
to cause problems in terms of simulation accuracy. As buoyant objects
of significant density do not float directly on the water surface, but are
submerged to some extent, the discrepancy is hidden. The accuracy may
become problematic for smaller, light objects, which follow the water surface
more precisely.

As the heightfields used for queries are separate from the rendered height-
field, it is also possible to use different resolutions for the two. If a higher
resolution is desired for rendering purposes, a low resolution simulation could
potentially still be used for queries while maintaining an accurate physics
simulation. This is of course interesting for performance reasons, both in
terms of computational effort and memory usage.

The rendered mesh will represent the water surface at the local client
time, meaning there will be a discrepancy between objects not controlled
locally and the water surface. As with the sampling discrepancies described
above the buoyancy physics hides this to some extent, avoiding the floating
object looking detached from the water surface. This is at least true for
moderate network latency. Should high latencies cause unacceptable errors,
solutions such as local modification of the water surface around objects could
be employed. If the latency can be estimated, two heightfields from different
points in time can be radially blended with respect to the local clients camera
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position. This means the water surface from the actual time is shown in the
distance, and the local time representation is used near the client.

7.2 Wave Entities
The implementation of wave particles is only a subset of the entire algorithm
as described by the original authors. For example, no reflection step is
included in the reference implementation, as it would need additional data
from the geometry surrounding the water body not readily accessible.

The described way of handling subdivision events maintains the deter-
minism of the system. Because future positions and subdivisions of any wave
particle can be determined another conclusion to draw is that, from a multi-
client perspective, only the initial wave particles need to be synchronized
over the network. A potential problem worth noting comes from applying
the previously described client-side prediction scheme. If the heightfield is
evaluated for a future time, subdivision events occurring between the cur-
rent time and this future time will not have been executed. A potential
solution could be to temporarily fast forward the subdivision events to the
desired point in time, ensuring an accurate evaluation of the water level.
However, in the reference implementation this was not deemed necessary as
the error introduced by evaluating a non-subdivided particle system was not
noticeable.

7.2.1 Other Uses
Using wave particles has proven a flexible solution that could potentially see
many applications. A basic wave generator can be implemented to provide
large wave trains, with wavelengths far larger than what the ambient simu-
lation can handle. This not only adds more waves to the ocean surface, but
could also be used to break up tiling artefacts caused by a low resolution
ambient simulation.

Attaching wave particle generators to objects interacting with the wa-
ter surface could also be an interesting use, giving the ability to simulate
the presence of boat wakes and similar effects. Care must be taken in a
multi-client environment, as initial positions of wave particles need to be
synchronized in order to provide equal simulation results, which leads to
increased network bandwidth usage. As objects in the world are already
synchronized, the position of these could be used for determining spawn
locations for particles. This would however require a deterministic way of
finding when such particle spawn events occur, that is insensitive to network
latency.
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7.3 Conclusion
This thesis has presented a system for ocean simulation in real-time applica-
tions. The main focus has been to obtain realistic results while maintaining
high performance and providing a decent level of user control. The system
has been divided into two systems: one for simulation of wind-driven waves
and the other for manually controlled individual waves on the ocean surface.

The wind-driven waves use a simulation method presented by Jerry
Tessendorf, which is based on statistical observation of ocean surfaces. The
method provides, if not the most, at least a very realistic simulation of open
ocean surface waves. To improve user control, the wave distribution spec-
trum used in the method was altered to expose more parameters which affect
the outcome of the simulation. In this thesis, the integration of this method
into a quadtree-based LOD scheme is also discussed.

Individual waves on the water surface was implemented as wave entities,
with an algorithm based on Cem Yuksel’s Wave Particles. The proposed sys-
tem lends the basic ideas from the original algorithm: representing waves
with a particle system, particle subdivision, and how to obtain the resulting
heightfield. Particle generation in the presented system is performed man-
ually by a user, as opposed to the original algorithm which approximate
water-object interactions to simulate the wave generation.

To address the steep performance requirements imposed by implement-
ing the system in a game engine, the paralell processing capabilities of the
target platform was exploited. To further improve performance, the FFTW
library provided a fast implementation of an FFT algorithm that could read-
ily be applied to the simulation data.
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