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Abstract

Java 7 introduced new features to the Java Programming Lan-
guage, e.g., the Try-With-Resources statement, Strings in Switch and
Type Inference for Class Instance Expressions.

The new features are small improvements of existing Java features,
yet they impact many aspects of the compiler, from scanning and
parsing to type analysis and code generation.

This thesis describes the implementation of the Java 7 features
using the declarative metacompiler tool JastAdd. We show how
declarative features of JastAdd, such as nonterminal and reference
attributes can be used to implement these features as modules ex-
tending JastAddJ , an existing Java 6 compiler. The resulting Java
7 compiler is evaluated concerning code size, modularity, compilation
time, and memory use during compilation.
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1 Introduction

The Java programming language is continuously evolving. In 2011, sixteen
years since JDK 1.0 was released by Sun Microsystems, there have been eight
major versions of Java released. Usually several versions of the Java language
are supported concurrently and, by extension, the corresponding versions of
the reference compiler require maintenance.

The reference compiler for the Java language, javac, is updated for each
new version of the programming language through iterative modification of
the previous version of javac. This development method leads to code dupli-
cation between the different versions of the compiler, so when a new bug is
discovered the fix must be added in each maintained version of the compiler
that uses the same features, since the implementation at least started with
an identical code base and thus likely suffers from the same bug.

In this thesis, we investigate a different approach to compiler development
for a growing language: an extensible base compiler is developed in such a
way that it allows new features to be added using self-contained extensions.
In theory this approach could eliminate the need to modify the code for the
base compiler in order to support new language features, and would limit the
code duplication needed to create a new compiler configuration. Additionally,
a bug fixed in the base compiler would immediately become fixed in all other
configurations without changes to the extensions.

Our approach requires a system of modularization that permits exten-
sions to augment large parts of the existing compiler logic without the need
for changes in the base compiler. The system used in this thesis for modular
compiler development is named JastAdd, and using this system I have devel-
oped an extension to the JastAdd Extensible Java Compiler JastAddJ [3].

The purpose of my thesis work was both to further explore the extensi-
bility of compilers developed using the JastAdd system, and to add support
for the latest version of the Java language, Java 7, to the JastAddJ com-
piler. I wish to answer the following questions in my thesis, regarding the
implementation of Java 7 support as an extension to JastAddJ:
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Question 1 To which extent can the features of Java 7 be individually mod-
ularized in the JastAddJ implementation?

Question 2 Is the implementation correct?

Question 3 How efficient is the implementation, with respect to

• code size
• compilation time
• memory usage

Section 2 covers the Java 7 language features, the JastAdd system and
other tools used to generate the JastAddJ compiler.

Section 3 details the process used to implement the Java 7 features in
JastAddJ, and in section 4 the implementation of each feature is examined.

A discussion of the completed implementation can be found in section 5
where I attempt to answer questions one and two above.

In section 6, the code size, compilation time and memory usage of
JastAddJ is compared with that of javac in order to answer question three
above.

Finally, section 7 wraps up with a conclusion of the lessons learned in
this thesis, and the answers to the three main questions.

2 Background

On July 28, 2011 the latest major update to the Java programming language,
Java SE 7, was released [11]. Notable earlier versions of the language include
J2SE 1.4 (2002), J2SE 5.0 (2004) and Java SE 6 (2006). Informally, these
versions are referred to as Java 1.4, 5, 6 and 7.

Each new version of Java has included language changes and changes to
the Java class library. The new language features introduced in Java 7 are
discussed in subsection 2.1.

Section 2.2 introduces the JastAdd Extensible Java compiler, and in sub-
section 2.3 we discuss the JastAdd system which was used to build this
compiler.

Section 2.4 contains an introduction to attribute grammars. Section 2.5
illustrates how JastAddJ is built using the attribute grammar and inter-type
declaration features of JastAdd.
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2.1 Java 7 Language Features

The language changes introduced in Java 7 are specified in Java Specification
Request 334 [12]. These include new syntax elements as well as semantic
changes to pre-existing statements or constructs in the Java language. We
have divided the changes into the following distinct features:

• Try-With-Resources

• Strings in Switch

• Diamond

• Improved Numeric Literals

• Multi-Catch

• More Precise Rethrow

• Safe Varargs

The implementation of each of these features is discussed in section 4.

2.2 JastAddJ

A compiler is a computer program which translates source files into exe-
cutable binary files to be run on a specific machine. In the Java environment
the compiler translates Java source files into binary class files, which are
executed on the Java Virtual Machine (JVM). The machine instructions for
the JVM are referred to as bytecode [10].

The JastAdd Extensible Java Compiler (JastAddJ) [3] is a Java compiler
that was developed for computer language research. JastAddJ originally
supported Java 1.4. Support for Java 5 was added as an extension in 2005.

JastAddJ consists of separate front-end and back-end modules. The front-
end modules handle parsing and semantic error-checking of Java source files
or class files. Each front-end module has a sibling back-end module that
handles the bytecode generation.

The six modules of JastAddJ at the time of writing are are listed in
figure 1. The Java7Frontend and Java7Backend modules constitute the Java
7 extension to JastAddJ (JJ7).

7



Java Version Module Name

Java 1.4
Java1.4Frontend
Java1.4Backend

Java 5
Java1.5Frontend
Java1.5Backend

Java 7
Java7Frontend
Java7Backend

Figure 1: The modules of JastAddJ.

2.3 JastAdd

JastAdd is a tool for compiler construction which generates Java source files
for a compiler using reference attribute grammars (RAGs) and inter-type
declarations contained in aspect files [6]. As we will demonstrate in this
thesis, the JastAdd system supports modular compiler construction.

JastAdd compilers analyse and transform programs using the Abstract
Syntax Tree (AST) – a representation of the syntactic structure of a source
file. The AST is built by a scanner and parser. However, since JastAdd does
not generate the scanner or parser they need to be built either by hand or
using other tools. Apart from the scanner and parser, all other parts of the
compiler can be generated by JastAdd.

JastAdd generates a Java class hierarchy representing the node types of
the AST. Attributes, types and methods are woven into the generated Java
classes using declarations in aspect files.

Aspects are used to group semantically related attributes and declarations
in a way that is not constrained by the Java classes these declarations are
woven into. These so-called inter-type declarations are useful in compiler
design as all declarations concerning a particular analysis in the compiler,
e.g. type analysis, can be grouped into the same aspect file regardless of
which Java classes the declarations affect [17].

JastAdd allows a mix of declarative and imperative programming styles
— declarative attributes and equations as well as imperative methods and
fields are woven into the AST types by JastAdd. The generated Java code
will typically not have to be modified as every necessary method, field or
class can be added using aspect declarations.

The next section discusses the node types generated by JastAdd, and how
these are used to build the AST. Section 2.4 contains an introduction to the
attribute grammar features used in JastAdd.
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2.3.1 The Abstract Syntax Tree

The AST is a tree structure containing nodes that represent syntactical con-
structs in a source file. JastAdd builds a Java class hierarchy to represent
the nodes of the AST.

Java’s polymorphism is used to inherit attributes and methods between
node types — similarities between types can be extracted into a common
supertype. For example, JastAddJ uses a Binary node type to represent
all binary expressions. Some operations on binary expressions have been
generalised so that only those parts that are not common between all binary
expressions have to be specialized in concrete subtypes.

JastAdd generates at least three implicitly defined node types. These
default types are seen in figure 2. ASTNode is the base node type which all
other types inherit from. List contains a list of zero or more nodes, and Opt
is an optional node that contains either one or zero nodes.

ASTNode

List Opt
0..1

0..*

0..1

0..1

Figure 2: Default node types in the JastAdd-generated AST.

AST Declaration Syntax Custom node types are specified in AST decla-
ration files (with the file name extension .ast, cf. figure 9a) as a list of
declarations in the following format:

Node [: Parent] [::= Children];

The parts within brackets are optional; Node is the name of the declared
node type, Parent is the name of the parent type that it extends. If no parent
is specified, it extends ASTNode. Children is a list of child declarations. The
declared node type will inherit all children from its parent type and may add
additional children.

A child declaration has one of the following forms:

T — A child of type T. It’s name is “T”.

N:T — A child of type T. It’s name is “N”.
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T* — A child of type List, containing zero or more T nodes.

[T] — A child of type Opt, containing zero or one T nodes.

<N> — A token of type String. It’s name is “N”.

<N:T> — A token of reference type T named “N”.

/T/ — A nonterminal attribute of type T named “T”.

Syntax Example The following JastAdd declarations build the node types
in figure 3:

Expr;
Literal : Expr;
IntegerLiteral : Literal ::= <Value:Integer>;
Binary : Expr ::= Left:Expr Right:Expr;
AddExpr : Binary;
SubExpr : Binary;

Note that the integer value of an IntegerLiteral is stored as an Inte-
ger token. In JastAddJ tokens are used to store names (of variables, classes,
methods, parameters etc.), and integer- and string literals.

ASTNode

Expr

Literal

Integer Literal

Binary

AddExpr SubExpr

0..1

0..2

Figure 3: Example AST node type hierarchy (Opt and List nodes omitted).
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AST Example Figure 4 displays an AST fragment representing the Java
expression (3 + 6 − 7), using the node types declared above. The names of
children in the AST fragment are marked on the edges between parent and
child nodes, and the name of each node’s type is displayed on the node. Non-
terminal attributes (not shown in this figure) are marked using a dashed line
connecting the nonterminal attribute to the rest of the AST. The grammar
and node types used here are a simplified version of those used in JastAddJ.

SubExpr

AddExpr

Integer-
Literal

Le
ft

Integer-
Literal

R
ight

Le
ft

Integer-
Literal

R
ight

3 + 6 − 7

Figure 4: An AST fragment representing the Java expression (3 + 6− 7).

2.4 Attribute Grammars

Attribute grammars (AGs) provide a nice declarative way of performing se-
mantic computations in an AST [9]. The two basic kinds of attributes sup-
ported by JastAdd are synthesized and inherited attributes, discussed in
subsubsection 2.4.1 and 2.4.2 respectively. Synthesized attributes propagate
information upwards in the AST, while inherited attributes propagate infor-
mation downward.

JastAdd supports an extension of AGs called reference attribute gram-
mars (RAGs) which allows attributes to be references to other AST nodes [6].

JastAdd generates attribute evaluator methods for each attribute and
checks, e.g., that there is an equation for each attribute in every possible AST.
Since the programmer who implements the attribute can not and should not
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have to know the order of attribute evaluation, it is important that they are
side-effect free. Working with the assumption that the attributes are side-
effect free, JastAdd may decide to cache attribute values in order to avoid
redundant computations.

Besides synthesized and inherited attributes, JastAdd supports non-
terminal attributes (NTA) [16]. Nonterminal attributes are discussed in sub-
subsection 2.4.3.

2.4.1 Synthesized Attributes

Figure 5 illustrates the computed values of the synthesized attribute name in
an AST fragment. This attribute computes the name of a Class or Package
node. The value of the attribute is computed in the same node that the
attribute is declared in, and the attribute may be accessed from the node
itself or a parent node — thus propagating the attribute value upwards in
the tree. Let’s assume the Package and Class node types each have a Name
token that contains the parsed name of the node, the name attribute can
then be implemented with the following JastAdd code:

syn String Package.name() = getName();
syn String Class.name() = getName();
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Package (1)

Package (2)

Class (3)

node attribute value
1 name "java"
2 name "lang"
3 name "Object"

Figure 5: A synthesized attribute that computes node names. The value of the
attribute for each numbered node is given in the table under the AST
fragment.

2.4.2 Inherited Attributes

If we wish to compute the full type name of a class it is not enough to simply
know the name of the class. We need to know the names of all enclosing
classes and packages, if any. However, as we have seen in the previous exam-
ple, synthesized attributes only propagate information upwards in the AST.
Now we wish to access information (enclosing class/package name) in AST
ancestor nodes. To accomplish this we can use inherited attributes to pass
the enclosing type or package name downward through the AST.

The difference between inherited and synthesized attributes is the context
in which the attribute is computed. An inherited attribute is computed in
an ancestor node. The ancestor that computes the attribute is the first
one that has a declared equation for the attribute. JastAdd traverses the
AST upwards until it finds an equation for the attribute, then evaluates that
equation. JastAdd also ensures that there is always at least one equation for
each inherited attribute in an ancestor node type, for every possible AST.
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Figure 6 illustrates the use of inherited attributes in the same mock AST
fragment as in figure 5, with one difference: a Program node has been added,
since this node is required to compute the inherited enclosingType at-
tribute for the top-level Package node. Again, the computed value of the
attributes is given for each numbered node in the table beneath the AST
fragment. The name attribute has no dependencies, however the fullType-
Name attribute depends on the name and enclosingType attributes. The
enclosingType attribute depends only on the first ancestor which has an
equation for enclosingType.

Program

Package (1)

Package (2)

Class (3)

node attribute value
1 name "java"

fullTypeName "java"
enclosingType nil-node

2 name "lang"
fullTypeName "java.lang"

enclosingType node(1)
3 name "Object"

fullTypeName "java.lang.Object"

enclosingType node(2)

Figure 6: Inherited attributes to compute full type names.
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The equations for the new attributes fullTypeName and enclosingType
are given in pseudo-code below:

inh ASTNode Package.enclosingType();
inh ASTNode Class.enclosingType();
eq Program.getChild(int index).enclosingType() = nilNode();
eq Package.getChild(int index).enclosingType() = this;
eq Class.getChild(int index).enclosingType() = this;

syn String Package.fullTypeName() {
if (enclosingType() != nilNode())

return enclosingType().name()+name();
else

return name();
}
syn String Class.fullTypeName() {

if (enclosingType() != nilNode())
return enclosingType().name()+name();

else
return name();

}

2.4.3 Nonterminal Attributes

Nonterminal Attributes (NTAs), also called higher-order attributes [16], are
attributes whose values are nonterminals — i.e. AST nodes. An NTA is quite
different from a regular synthesized or inherited attribute in that the “value”
of the attribute is only computed once, regardless of JastAdd’s caching pref-
erence. The produced node is then rooted at the node that computed the
nonterminal attribute.

NTAs are useful to synthesize constructions in the program that were not
literally present in the parsed source code. For example, during type analysis,
JastAddJ requires a TypeDecl node to represent array types. There is no
matching declaration to be parsed, since array types are implicitly declared in
Java. Instead, an NTA is used to create a placeholder array type declaration.

To illustrate NTAs in AST diagrams we will use a dashed line to connect
the NTA node to its parent in the AST. The NTA name is displayed just
like other node names, on the line connecting the node to its parent, but is
written in italics. Figure 7 below illustrates the Constant NTA, added to the
SubExpr node type:

15



SubExpr

AddExpr

Integer-
Literal

Le
ft

Integer-
Literal

R
ight

Left

Integer-
Literal

R
ight

Integer-
Literal

Constant

Figure 7: Nonterminal attribute

2.4.4 Rewrites

The AST can be transformed automatically by JastAdd through a mechanism
called rewrites. Rewrites are a kind of term rewriting system [8] which allow
nodes (terms) in the AST to be transformed under given conditions.

In JastAdd, rewrites are specified using so-called rewrite rules. Each
rewrite rule may be unconditional, or conditional. Conditional rewrites use
a boolean expression to determine if the node should be rewritten. A rewrite
creates a fresh AST node, either from scratch, or using copied descendants
from the original node. The following figures will use a dashed arrow to
indicate which nodes have been copied from the original node. Since the new
node replaces the rewritten node, the originals of the copied descendants are
discarded. The copying of descendants is in effect equivalent to moving them
to the new AST fragment.

Rewrites are triggered by the regular child access operations — the pro-
grammer does not manually trigger the rewrite. The rewrites are applied
transparently — the child access operation will return the transformed child
node.

Rewrites are useful for a number of common tasks; e.g. constant propa-
gation or transforming equivalent expression forms into a uniform structure.
In general, a rewrite should not affect the semantics of the transformed AST
fragments.

Example: Constant Propagation The Java expression 3 + 5 + 6 is a constant
expression. It can safely be replaced by the constant value 14. A rewrite rule
for this transformation might look like this:
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rewrite Expr {
when (isConstant()) {

return new Constant(constantValue());
}

}

Example: Multiple Declaration Flattening Java allows multiple declarations
— declaring several variables of the same type in one declaration statement:

int index, i, j;

Let’s say a compiler represents any variable declaration with a MultiDecl
node, even if it is a single declaration. The MultiDecl node contains a list
of declared variable names. This can be flattened to a list of SingleDecl
nodes, which more tightly couples the declared { variable, field, parameter
} name with its type. Figures 8a and 8b illustrate the flattening of two
MultiDecl nodes.

Multi-
Decl

Type

T
yp

e

List

Name

N
am

e*

Single-
Decl

Type

T
yp

e

Name

N
am

e

rewrite

Figure 8a: Flattening of declaration statements: single declaration case.
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Multi-
Decl

Type

T
yp

e

List

Name Name

N
am

e*

List

Single-
Decl

Type

T
yp

e

Name

N
am

e

Single-
Decl

Type

T
yp

e

Name

N
am

e

rewrite

Figure 8b: Flattening of declaration statements: multiple declaration case.

2.5 Generation Architecture

Figure 9a illustrates the build pipeline of JastAddJ’s AST Java class package.
Most of the compiler logic is embedded in the Java classes representing the
node types. JastAdd builds the node types from the AST definitions in .ast
files from each module, then weaves attributes, rewrites, fields, and methods
into the generated classes.
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JastAddJ modules

*.jrag files:
attributes
rewrites
NTAs

*.jadd files:
methods
fields

*.ast files:
node type decls

+

Node Types

Node Types
+ attributes
+ fields
+ methods
+ rewrites & NTAs

Ja
st

Ad
d

Figure 9a: The build pipeline of the JastAddJ AST package.

2.5.1 Scanner and Parser

Building a compiler with JastAdd requires some external tools to parse the
Java source files and build the AST. For JastAddJ, the parser is generated
by the Beaver parser generator [2], and the scanner is generated by JFlex [7].

The JastAddParser program is used to pre-process the parser specifica-
tions. JastAddParser combines a set of parser grammar productions into one
parser specification that can be used with the Beaver parser generator. This
allows the JastAddJ parser specifications to be somewhat modular — new
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productions can be added to the parser grammar by JastAddJ extensions in
a way that would otherwise not have been possible.

JastAddJ modules

*.parser files:
parser productions

JastAddParser

Beaver

Parser

*.flex files:
scanner rules

JFlex

Scanner

Figure 9b: The build pipeline of JastAddJ’s scanner and parser.

3 Implementation Process

We had the following goals for the implementation of JJ7:

• The new features should be easy to extend

• The implementation should be reasonably simple to understand for new
developers

• The implementation should be well documented

• The implementation should be complete

• The implementation should be correct

The implementation process used test cases to test the completeness and
correctness of JJ7. The implementation of the Java 7 language features was
specification-driven; initial test cases were derived directly from the specifica-
tion, and the implementation was modularized with one module per feature.
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Most of the initial test cases were compilation tests, which tested that the
compiler accepted the general syntax variations of the new language features.
Later, some execution tests and more advanced compilation tests were added
to test that the compiled programs executed correctly and to test possible
implementation edge cases. Section 3.1 covers the test cases used in greater
detail.

During the development, the following steps were taken for each feature:

Testing Tests cases were created based on the preliminary documentation
of the Java 7 features (see subsection 2.1).

Implementation A first implementation of the feature was written to sat-
isfy the test cases.

Refactoring Refactoring opportunities were used to refine the implementa-
tion. Tests for bugs discovered during the implementation were added
to the test suite.

Documentation Documentation comments were written for the new at-
tributes and methods.

For some features, new bugs or missing features were discovered dur-
ing the documentation step, which lead to the addition of new tests, re-
implementation, refactorings and new documentation.

3.1 Testing

Extensive testing is a valuable tool in software development in general, and
compiler design is no exception. A high quality test suite helps ensure the
correctness of the compiler, and allows developers to refactor the compiler
or implement new features with increased confidence that the features tested
by the test suite have not broken.

Ideally, any errors introduced during development should be caught by
the test suite. Unfortunately, compilers are complex software systems and
it is often not possible in practice to create a test suite that would catch all
possible compiler errors.

Due to the perceived importance of testing for the development of JJ7,
tests were the first concern addressed during the implementation. Unfortu-
nately, it was not feasible to obtain a license to use the official test suite for
Java compliance, known as the JCK, owned by Oracle.

Instead of using the JCK test suite, it was decided that new tests would
be written for JJ7. Two different frameworks were used for these tests; Jacks
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and JUnit. Jacks is a framework and a test suite that was originally developed
by IBM and was the regression test suite of the Jikes project [13]. Since then,
Jacks has become part of the Open-Source Mauve project [14]. JUnit is a
well known unit testing framework for Java written by Kent Beck [4].

These two test frameworks complement each other — Jacks is used to test
that compilation passes or fails, while JUnit tests the execution of compiled
programs.

A custom test suite was developed as part of this thesis work. It contains
128 compilation tests and 36 execution tests. Of the 128 compilation tests,
6 are regression tests for bugs that were fixed in the Java 1.4 or 5 versions of
JastAddJ during the development of JJ7.

All tests were run with the Java 7 reference compiler to confirm that the
tests were correct.

4 Implementation of Java 7 Language Features

The implementation of each feature listed in subsection 2.1 is discussed one
at a time in the following sections, focusing on three aspects:

Specification A summary of the syntax, semantics, and possible corner
cases of the feature.

High-Level Design An overview of the approach used to implement the
feature.

Implementation Details Details of how the feature was implemented.

Figure 10 lists the parts of JastAddJ that were affected by each feature:

Feature Scanner Parser Front-end Back-end
4.1 Try-With-Resources X X X
4.2 Strings in Switch X X
4.3 Diamond X X
4.4 Improved Numeric Literals X X X
4.5 Multi-catch X X X
4.6 More Precise Rethrow X
4.7 Safe Varargs X

Figure 10: Scope of each feature

22



4.1 Try-With-Resources Statement

The try statement has been an essential part of the Java language since its
inception. Any checked exception1 which may be thrown by some statement
must be caught and handled by a surrounding try statement with a matching
catch clause, or be declared to be thrown by the enclosing method.

A try statement can also be used as a simple control flow harness —
if the optional finally block is present, then any control-flow path that
passes through the corresponding try-statement must also pass through the
finally block.

A common use case for the try statement is the handling of exceptions
thrown by an operation on a resource. Consider the following Java 6 example:

Socket socket = null;
try {

socket = new Socket("elise", 1080);
OutputStream out = socket.getOutputStream();
out.write("Life can be hilariously cruel.".getBytes());

} catch (IOException e) {
// report the error and perform recovery

} finally {
if (socket != null) {

try {
socket.close();

} catch (IOException e1) {
}

}
}

The resource here is the socket variable, which holds a reference to a
socket that we connect to a server. We want to send a message to this server,
but both socket creation and the sending of the message can potentially
fail and throw an exception — if e.g. the server is unreachable the call
to the constructor will throw an IOException and if the server suddenly
disconnects after the connection has been established then the call to write
will throw an IOException.

If an exception is thrown after the socket has been connected we wish
to disconnect it, in order to not leave a dead socket hanging around. The

1Java has both checked and unchecked exceptions (RuntimeException, Error and
their subclasses); the unchecked exceptions need not be caught by the programmer but
will interrupt the thread if uncaught.
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finally block meets this need of closing the socket, since we want to close
the socket regardless of whether there was an exception or not. However,
notice that we must check that the socket was actually created (not null)
before we call close.

The try-with-resources (TWR) statement from Java 7 is a new variant
of the try statement that simplifies the above use case. Using a TWR
statement, the previous example could look like this:

try ( Socket socket = new Socket("elise", 1080) ) {
OutputStream out = socket.getOutputStream();
out.write("Life can be hilariously cruel.".getBytes());

} catch (IOException e) {
// report the error and perform recovery

}

The TWR statement takes care of closing the resource (socket), as if
the finally block was still there.

This new form of the try statement allows the declaration of one or more
resources at the start of the try statement to be used as local variables within
the try block and which are automatically closed when execution reaches the
end of the try block.

4.1.1 TWR: Specification

The TWR statement starts with a list of resource declarations, within paren-
theses, before the body of the try block. Each resource must be a subtype
of AutoCloseable, a new interface introduced in the Java 7 class library
which declares the close method used for auto-closing the resources.

It is possible to declare several resources in the declaration part of the
TWR. The resource declarations must be semicolon-separated, and an op-
tional trailing semicolon is permitted:

try ( AutoCloseable r1 = newResource();
AutoCloseable r2 = newResource(); ) {

}

If a checked exception can be raised by any of the resource initialization
expressions, or by the close method of an initialized resource, it must be
handled in the enclosing method or initializer, or be declared as being thrown.
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A TWR statement may have a list of catch clauses to handle excep-
tions raised within the body of the TWR statement, by any of the resource
initializations, or by the automatic closing of any of the associated resources:

try ( AutoCloseable resource = mayThrowE1(); ) {
throw new E2();

} catch ( E1 e ) {
// handle exception thrown by
// resource initialization

} catch ( E2 e ) {
// handle exception thrown from
// the body of the TWR block

} catch ( E3 e ) {
// handle exception thrown by
// automatic closing of the resource

}

There may also be a finally block at the very end of the TWR state-
ment. Its semantics are the same as if used in an ordinary try statement
— the finally block is always executed, regardless of which exceptions are
thrown and/or caught.

Any exception thrown by the body of a TWR statement is called the
primary exception of that TWR. When a primary exception is thrown the
automatic closing of resources can cause a new exception, called the sup-
pressed exception, to be thrown. The suppressed exception is added to the
primary’s list of suppressed exceptions2.

2The suppressed exception list was added to the class Throwable in the Java 7 class
library
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4.1.2 TWR: High-Level Design

The TWR statement can be described through a desugaring process that
translates any TWR statement to a set of nested try statements using inter-
mediate basic TWR statements. A basic TWR statement is a TWR state-
ment with only one resource declaration and no catch or finally clauses.
The basic TWR does not handle resource initialization exceptions.

The desugaring process consists of three steps:

1. Eliminate catch and finally clauses, if any are present, by enclosing
the TWR statement in a surrounding try- statement and moving the
catch and/or finally clauses to it. See figure 11.

2. Unroll the TWR statement into a nested set of basic TWR statements.
This process is illustrated in figure 12.

3. Transform each basic TWR into a regular try statement according to
the template shown in figure 13.
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try ( <RESOURCE-DECLS> ) {
<BLOCK>

} catch (E1 e) {
<CATCH 1>

} catch (E2 e) {
<CATCH 2>

} finally {
<FINALLY>

}

try {
try ( <RESOURCE-DECLS> ) {

<BLOCK>
}

} catch (E1 e) {
<CATCH 1>

} catch (E2 e) {
<CATCH 2>

} finally {
<FINALLY>

}
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Figure 11: The catch and finally clauses are moved out to an enclosing try
statement.
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try ( <RESOURCE 1>; <RESOURCE 2> ) {
<BLOCK>

}

try ( <RESOURCE 1> ) {
try ( <RESOURCE 2> ) {

<BLOCK>
}

}
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Figure 12: A TWR statement without catch or finally clauses is unrolled to
form a nested set of basic TWR statements.
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try ( <RESOURCE-TYPE> resource = <EXPRESSION> ) {
<BLOCK>

}

{
<RESOURCE-TYPE> resource = <EXPRESSION>;
Throwable #primary = null;

try {
<BLOCK>

} catch (Throwable #p) {
#primary = #p;
throw #p;

} finally {
if (resource != null) {

if (#primary != null) {
try resource.close();
catch (Throwable #suppressed) {

#primary.addSuppressedException(#suppressed);
}

} else {
resource.close();

}
}

}
}

Figure 13: The transformation of a basic TWR statement into a regular try
statement, illustrated in pseudo code.

The implementation of TWR affected both the front-end and back-end
of JastAddJ, as new parser productions, code generation and static semantic
error handling was needed.

A list of the needed changes follows:

• New parser productions in order to parse the TWR syntax.

• New AST classes to represent TWR and basic TWR statements.

• Type checking for resource declarations to ensure that the resources
are subtypes of AutoCloseable.

• Exception and reachability error checking.

• Code generation for the basic TWR statement: automatic closing of
resource and exception handling.
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4.1.3 TWR: Implementation Details

A couple of new productions were added to the parser grammar to accept
the different forms of TWR, and the following node types were added to the
AST definitions:

TryWithResources — try-with-resources statement.

ResourceDeclaration — new type of declaration node to handle the
resource declarations of a TWR statement.

ResourceModifiers — specialization of the ordinary Modifiers node
type which is implicitly final.

BasicTWR — basic TWR statement.

Much of the exception checking from the Java 5 TryStmt node type
could be reused for TryWithResources. The exception checking analysis
in JastAddJ checks whether an exception is properly caught or declared to
be thrown. Exception checking also ties in to the reachability analysis as
the reachability of a catch clause depends on whether there is actually an
appropriate exception thrown within its corresponding try block that is not
caught by a previous catch clause.

Stmt

TryStmt

TryWith-
Resources BasicTWR

VariableDeclaration

ResourceDeclaration

Modifiers

ResourceModifers

Java 5 AST

Java 7 AST

Figure 14: New node types to represent the TWR variation of the try statement.

Several existing attributes were extended for the new TryWithResources
node type to handle front-end static semantic errors etc. These are not
covered here, as the changes were mostly trivial.
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4.1.4 TWR: Delegated Code Generation

As described above, the full TWR statement can be expressed as a series of
nested try and basic TWR statements. This fact can be very conveniently
exploited using rewrites. However, a rewrite is applied to the AST whenever
an AST node with a rewrite rule is accessed3, and so the static semantic
error checking implemented for the TWR statement would have to be imple-
mented for the basic TWR statement instead. This would have a couple of
drawbacks, e.g., TWR statements could not be unparsed in the same form
as they occur in the source file, and error messages generated for errors such
as name collision with a resource name or resources not being subtypes of
AutoCloseable would be much less descriptive due to the lack of high-level
information about the original TWR statement.

In JJ7, in stead of using a rewrite to make the transformation of the
TWR statement, a nonterminal attribute (subsubsection 2.4.3) is used. An
NTA was added to the TryWithResources node, named Transformed, which
computes a transformed version of the statement. Figure 15 shows this new
NTA as a child of a TryWithResources node.
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[F
inally]

Catch-
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CatchClause*

Transformed

New NTA!

Figure 15: The Transformed NTA computes the transformed version of a TWR
statement.

During the code generation phase of compilation TryWithResources
nodes compute the Transformed NTA and delegate the code generation task
to that generated node. The generated NTA is either a basic TWR node or a
try statement node, depending on the structure of the original TWR state-
ment. All that remains is to implement the code generation of basic TWR

3Some magic can be done using a rewrite condition that is triggered only during code
generation, but such an approach gets very messy very quickly.
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statements, a much simpler task compared to generating bytecode directly
for the TWR statement.

Besides reducing the number of lines of code in the TWR implementation,
the delegated code generation approach can save some time during compila-
tion. Since the NTA is only generated when it is first accessed, it will not
be computed before the code generation step. If there are any semantic er-
rors in the program being compiled, the NTA will never be computed since
compilation halts before code generation.

Another benefit of this approach is the absence of rewrites, which can
take considerable time to compute for nodes that are not close to the bottom
of the AST. Higher-level node types such as TryWithResources tend to be
higher up in the AST.
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Figure 16: The Transformed NTA.

Figure 16 illustrates how the Transformed NTA is generated for a TWR
statement. The desugaring process described above is used to generate nested
try and basic TWR statements:

1. We start with TWR (1), this statement has a few catch clauses
and a finally block . We apply step one of the desugaring process
to get the Transformed NTA: a try statement (2) with an inner TWR
(3).
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2. TWR (3) has no catch or finally, so its Transformed NTA is a basic
TWR (4). The first resource declaration from TWR (3) is copied
and used as the resource declaration of the generated basic TWR (4),
while the rest of the resources (in this case there is only one left) are
copied to a new nested TWR (5).

3. TWR (5) has only one resource declaration and hence can be directly
transformed into basic TWR (6).

Note that the original TWR block has been copied down to the inner
basic TWR. Bytecode is generated only for the innermost copy of the original
try code block. No code is actually generated for the enclosing TWR nodes.

4.2 Strings in Switch

The switch statement directs control flow to the first case label that
matches the switch expression. Consider the method s1 below. It will
return −1 if it is called with i ∈ {1, 9}, 0 if i = 13, or 1 otherwise:

int s1(int i) {
switch (i) {

case 1:
return -1;

case 9:
return -1;

case 13:
return 0;

}
return 1;

}

Before Java 5, only integer expressions were allowed in switch state-
ments. In Java 5, enum types were added to the language and also allowed in
the switch statement. In Java 7, Strings were added to the set of allowed
types in the switch statement.

4.2.1 Strings in Switch: Specification

The semantics of a switch statement with a String expression are exactly
the same as for any other type of switch statement.

The switch statement starts with an expression within parentheses, fol-
lowed by a block containing a number of case labels. Each case label must
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have a constant expression of the same type as the switch expression. The
switch statement will transfer control to the case label within the switch
block that has an expression which is equal to the switch expression.

If no such label is present, and a default label exists within the switch
block, control flow continues at the default label, otherwise the entire
switch block is skipped.

For example, the following method s2 will return −1, since the String
"saw" does not equal any of the case labels — the target of the switch will
be the default label:

int s2() {
switch ("saw") {

case "tBx":
return 1;

case "tBw":
return 0;

default:
return -1;

}
}

The switch statement has inherited a few idiosyncrasies from the C
programming language. One of these is the so-called fall-through feature: a
switch statement transfers control to one of its case labels, but if there
is no break or any other statement to transfers control out of the switch
block before the next case label, then control flow will continue beyond that
label without leaving the switch block.

Fall-through is a widely used feature of the switch statement. Obviously
it should work as usual, even if the switch expression is a String.

The method s3 below is exactly equivalent to the method s1 above. Note
the use of fall-through between the first and second case labels:

int s3(int i) {
switch (i) {

case 1:
case 9:

return -1;
case 13:

return 0;
}
return 1;

}
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4.2.2 Strings in Switch: High-Level Design

Intuitively, a switch statement is equivalent to a series of chained if-
statements:

switch (str) {
case "tBK":

<CASE 1>
case "saw":

<CASE 2>
case "tBx":

<CASE 3>
case "tBw":

<CASE 4>
}

if (str.equals("tBK"))
<CASE 1>

else if (str.equals("saw"))
<CASE 2>

else if (str.equals("tBx"))
<CASE 3>

else if (str.equals("tBw"))
<CASE 4>

However, this does not allow fall-through. Additionally, a switch state-
ment can achieve better performance than a chain of if-statements by reduc-
ing the number of branches and comparisons in the generated Java bytecode.

The Java Virtual Machine provides two bytecode instructions to imple-
ment switch statements; lookupswitch [10, p. 525] and tableswitch [10,
p. 560]. The tableswitch instruction requires more memory than lookup-
switch but may in some cases be faster.

4.2.3 Strings in Switch: Implementation Details

The parser did not have to be modified to accept Strings in the switch
statement or case labels. Any expression, even String literals, was already
accepted by the parser.

The existing Java 5 implementation in JastAddJ of the switch statement
had a type checking method that ensured only expressions of enum or integer
types (excluding long) were used as switch expression. The case labels
were only type checked against the switch expression, so once the switch
expression was accepted by the type checking method the case labels were
also correctly type-checked.

The only other front-end change for this feature besides type checking was
duplicate checking of case labels (duplicate case labels are not allowed).
This was implemented by refining an existing attribute.

The back-end implementation required more work than the front-end.
An early goal was to implement the strings in switch feature using switch
statements in order to preserve fall-through without having to add extra-
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neous branch instructions. However, a single switch statement was not
enough. Somehow the String labels had to be enumerated, and the switch
expression had to be transformed to an index into that enumeration.

The approach used to solve this problem was to generate two switch
instructions. The first one selects an index that is used in the second. The
code generation follows these steps:

1. Enumerate the original switch labels. The default label is number
zero and the other case labels are numbered 1, 2, · · · in order of their
appearance in the switch block.

2. Evaluate the switch expression and store it in the temporary variable
#str.

3. Initialize the temporary index variable #target to zero.

4. Switch on the hash code of #str to determine the correct value for the
index variable.4

5. Generate the original switch as an ordinary integer switch statement,
with #target as the switch expression and replacing the case labels
for their enumerated indices from step 1.

4The String.hashCode method returns the same value across different platforms, so
there is no risk in storing the hash codes in generated bytecode.
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switch ( <EXPR> ) {
case "tBK":

<CASE 1>
case "saw":

<CASE 2>
case "tBx":

<CASE 3>
case "tBw":

<CASE 4>
default:

<DEFAULT>
}

String #str = <EXPR>;
int #target = 0;
switch (#str.hashCode()) { // SWITCH 1
case 113597:

if (#str.equals("tBK"))
#target = 1;

break;
case 113641:

if (#str.equals("saw"))
#target = 2;

else if (#str.equals("tBw"))
#target = 4;

break;
case 113642:

if (#str.equals("tBx"))
#target = 3;

break;
}

switch (#target) { // SWITCH 2
case 1:

<CASE 1>
case 2:

<CASE 2>
case 3:

<CASE 3>
case 4:

<CASE 4>
default:

<DEFAULT>
}

Figure 17: Code generation for a switch statement with a String expression.

The code generation for the Strings in Switch (SiS) feature was imple-
mented by refining the code generation method of the switch statement
from the Java 5 version of JastAddJ. The new method checks if the switch
expression is a String, and if so it will enter the SiS specific code generation
procedure, otherwise the Java 5 code generation method is invoked.

The SiS specific code generation is not implemented using delegated code
generation as with the TWR statement. This is because the SiS code genera-
tion requires unnamed temporaries which were not available in the JastAddJ
AST already, and adding these would require more work than simply hand-
writing the new code generation procedure. Adding an unnamed temporary
node type and refactoring the implementation of this feature is possible fu-
ture work.

Figure 17 shows how Java bytecode is generated for a particular switch
statement. The pseudo code in the figure represents the generated bytecode.
In this figure, anything that has a name starting with # is an unnamed
temporary variable.

The first switch branches based on the hash code of the String expres-
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sion. It is possible for two non-equal Strings to have the same hash code,
so at least one if statement is needed after every case label to check that
the switch expression is equal to the constant expression of the case label.
Note that the two Strings "saw" and "tBw" in fact have the same hash
code — an extra if statement is needed to distinguish between those two
possible String values.

We can see that fall-through is preserved in the generated code, since
the order of the statements from the original switch statement is preserved
in the second generated switch statement — it is merely the case labels
that have changed, and they are equivalent to the corresponding labels of
the original statement.

As previously mentioned, switch statements in Java may be implemented
using two different bytecode instructions; lookupswitch and tableswitch.
The tableswitch instruction is the most efficient in terms of speed, while
lookupswitch is more space efficient.

The test suite developed during the implementation of JJ7 tests both the
tableswitch and lookupswitch code generation for strings in switch. For
information about how this is tested refer to appendix B.

4.3 Diamond

Generics were introduced in Java 5 to aid the programmer by providing
improved static type analysis. However, generics in Java 5 were in many
cases needlessly verbose. For example, consider the following Java statement:

Map<String, List<Integer>> map =
new HashMap<String, List<Integer>>();

In the above example, a new instance of the generic class HashMap is
created; it maps Strings to lists of Integers. The programmer must specify
the same type arguments twice — once in the variable type and once in the
class instance creation expression.

In Java 7 this problem was alleviated with the Improved Type Inference
for Generic Instance Creation feature, henceforth known as diamond. Now,
under certain conditions, the type arguments can be omitted:

Map<String, List<Integer>> map = new HashMap<>();

The name of this feature stems from the appearance of the empty type
parameter list <> and its resemblance to a parallelogram. The empty type
argument list is also called the diamond operator.
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The diamond feature allows type arguments to be omitted as above in an
assignment context, or even when the instance expression is an argument of
a method invocation, e.g.:

void someMethod(Map<String, List<Integer>> map);
...
someMethod(new HashMap<>());

4.3.1 Diamond: Specification

When instantiating a generic class, the programmer may provide an empty
type argument list <>, called the diamond operator. The compiler will then
infer the type arguments of the instantiated class.

Type inference for generic instance creation piggybacks on the inference
of method type arguments that has been part of the Java language since Java
5. The algorithm for inference of method type arguments is complex, so only
an short and informal overview is given below. Refer to the Java Language
Specification for the exact algorithm [5, p. 466].

4.3.2 Inference of Method Type Arguments

The type arguments of a generic method invocation are inferred first through
the types of the actual arguments using method invocation conversion. Then,
if any of the type arguments are still unresolved the return type is used to
infer those unresolved type arguments (if possible) using assignment conver-
sion.

Consider the following example:

<T> List<T> newList() {
return new LinkedList<T>();

}

void m() {
List<Integer> list = newList();

}

The newList method is a generic method that creates an instance of
the generic class List. The method m has a call to newList. Since the
method invocation occurs on the right hand side of an assignment, the result
is subject to assignment conversion. The assignment conversion implies that

40



the return type List<T> must be assignable to the type List<Integer-
>, and so the type parameter T is inferred through the return type to be
Integer.

Now consider a second invocation of the same method declared above:

Integer value = newList().get(0);

The result of the method invocation is no longer subject to assignment
conversion, so the type argument remains unresolved and Object is used as
the inferred type argument. The above invocation will not compile, since an
Object reference can not be directly assigned to a Integer reference.

If the newList method is changed slightly so that it takes an initial
element to put in the list, then type inference will use the argument to
calculate the type of T without having to use the return type:

<T> List<T> newList(T initial) {
List<T> list = new LinkedList<T>();
list.add(initial);
return list;

}

void m() {
Integer value = newList(3).get(0);

}

4.3.3 Diamond: High-Level Design

Class instance expressions are treated as a method invocations. This allows
the method type inference to be used to determine the type of the instance
expression.

If a generic class C with k constructors is instantiated using the diamond
operator, then for each constructor ci where i ∈ 1, 2, · · · , k in C a placeholder
method mi is created. Each placeholder method mi is parameterized with
n + m type parameters, where n is the number of type parameters of C and
m is the number of type parameters of ci (m ≥ 0). If P1, P2, · · · , Pn are the
first n type parameters of mi, the return type of mi is C < P1, P2, · · · , Pn >.

To determine the type arguments of C the class instance expression is
treated as a method invocation, with the placeholder methods as the candi-
date methods. The regular rules of method invocation are used to select the
most specific placeholder method mj to use, depending on the arguments of
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the class instance expression. Type inference is used to determine the type
arguments A1, A2, · · · , An+m of mj, which in turn gives the inferred type
C < A1, A2, · · · , An > of the class instance creation expression!

Example 1

class E1<T> {
T pass(T t) { return t; }

static {
E1<Integer> instance = new E1<>();
assert 13 == instance.pass(new Integer(13)).intValue();

}
}

Since the class instance expression is subject to assignment conversion we
can omit the type arguments — the compiler will as expected compute the
type argument Integer.

Example 2

class E2<T> {
T pass(T t) { return t; }

static {
assert 13 == new E2<>().pass(new Integer(13)).intValue();

}
}

A trained programmer can probably deduce that the type argument
should be Integer, since the method pass is called with an Integer ar-
gument. However, the call to the constructor has no arguments, and is not
subject to assignment conversion, so the type argument can not be resolved.
The compiler will use Object as type argument instead (method type infer-
ence uses Object for unresolved type arguments).

After the type of the class instance expression has been determined,
method resolution is performed but there is no method named intValue
in the type Object, so the compiler halts with an error.
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Example 3

class E3<T> {
T i;
E3(T i) { this.i = i; }

static {
assert 13 == new E3<>(new Integer(13)).i.intValue();

}
}

This example is similar to the previous example. Again, a reasonably
skilled programmer can deduce that the type argument should be Integer
since the type of the argument passed to the constructor is Integer.

In this case the Java compiler will also infer the type argument Integer,
because the actual argument of the constructor constrains the type argument.

4.3.4 Diamond: Implementation Details

Type inference for generic instance creation is entirely managed in the front-
end. The implementation only required modifications to the parser, to accept
the diamond operator, and to the type analysis of class instance expressions
using the diamond operator.

The new node type DiamondAccess was added to represent the use of the
diamond operator in a TypeAccess. New type analysis was implemented for
the DiamondAccess using the placeholder method approach described above.

The placeholder methods could be implemented using the existing
MethodDecl node type, but in order to exempt the placeholder methods from
semantic error checking the new node type PlaceholderMethodDecl was
created, dedicated to placeholder methods. The PlaceholderMethodDecl
implementation was trivial — all of the semantic error checking methods
were changed so that they do nothing for this special node type.

The placeholder methods were inserted into the AST in as children of
GenericClassDecl using a nonterminal attribute. Since nonterminal at-
tributes are only computed when accessed, this approach implies little over-
head for supporting the diamond feature — if the diamond operator is not
used then no placeholder methods will be generated.
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4.4 Improved Numeric Literals

The following numeric literal kinds are available in Java 7:

kind octal decimal hexadecimal binary
Integer literal X X X since Java 7
Long literal X X X since Java 7

Floating point literal X since Java 5
Double literal X since Java 5

Java 7 allows the programmer to use a binary representation for integer
and long literals, and allows underscores in all numeric literals. For example,
the following numeric literals are valid in Java 7:

0b00101 // binary integer literal
1.3_4 // underscore in decimal double literal
0xb0a7_10ad // underscore in hexadecimal integer literal
100__000 // multiple underscores in integer literal

Underscores were added as a meaningless separator character intended to
make certain literals more readable to programmers. They are perhaps most
useful in binary literals which may become very long — up to 64 digits (not
counting leading zeroes)!

4.4.1 Improved Numeric Literals: Specification

A binary literal starts with the characters 0b and continues with a string of
zeroes and ones. The same numeric range limits apply to binary literals as
for their hexadecimal counterparts.

Underscores have no meaning in the numeric representation of a numeric
literal Any number of underscores may be placed between two digits of a
numeric literal, or between the leading zero of an octal literal and the first
digit. For example, the following literal is not valid since there is an un-
derscore between a digit and a non-digit: 0xc01d_p001 (p is the exponent
character for hexadecimal floating point literals).

4.4.2 Improved Numeric Literals: High-Level Design

Underscores in numeric literals cause a new problem in the scanning of Java
code: distinguishing between legal and illegal uses of the underscore charac-
ter during the scanning phase requires lookahead. The existing scanner in
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JastAddJ did not use lookahead.
There were two ways to solve this problem; either the scanner could be

extended to handle underscores directly by filtering out valid underscores and
raising errors for literals with misplaced underscores, or an intermediate node
could hold the scanned integer literal, including underscores, to be parsed at
a later stage of compilation.

These two approaches both have advantages and disadvantages;

Approach 1 Rewriting the scanner:

• No need to modify the AST definitions.

• A more complex scanner specification using custom scanner routines
to handle the lookahead problem.

• Since underscores are filtered out before parsing, numeric literals could
not be unparsed in the same format as the source literal.

Approach 2 Adding an intermediate numeric literal node type:

• Simplified scanner rules for numeric literals.

• The possibility to better handle the reporting of syntax errors in integer
literals, instead of halting during scanning with a less descriptive error
message.

• The AST must be refactored to add the numeric literal node type.

Although the first approach would require less work and refactoring, it
was decided that due to the improved error feedback the second approach
was slightly favorable.

4.4.3 Improved Numeric Literals: Implementation Details

Two new node types were added to the AST; NumericLiteral and Ille-
galLiteral.

NumericLiteral is the intermediate representation of a parsed numeric
literal. A rewrite rule was added for this node type which rewrites it either to
an IllegalLiteral, if there are any syntax errors, or one of the specific nu-
meric literal node types IntegerLiteral, LongLiteral, FloatingPoint-
Literal or DoubleLiteral.
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In JastAddJ the scanner rules for numeric literals were complex in order
to allow all legal syntax variations yet not accept any kind of malformed
literal.

During the implementation of the Improved Numeric Literals feature of
Java 7 the scanner rules for different kinds of numeric literals were made less
strict and thus simplified. Most of the possible syntax errors are checked in
the numeric literal parsing method instead, so in JJ7 most numeric literal
syntax errors are reported with more detailed error messages than previously.

Literal

NumericLiteral

IntegerLiteral LongLiteral FloatingPointLiteral DoubleLiteral

IllegalLiteral
new in JJ7

Figure 18: The new Numeric-Literal and Illegal-Literal node types.

4.5 Multi-Catch

The catch clause of a try statement could, up to Java 6, catch a single
exception type. Even if several exception handlers did the same thing, each
exception had to be caught individually:

try {
// this may throw exceptions Problem1 or Problem2:
doSomething();

} catch (Problem1 e) {
handleProblem();

} catch (Problem2 e) {
handleProblem();

}

Using the multi-catch feature of Java 7, the above example can be sim-
plified to:
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try {
doSomething();

} catch (Problem1 | Problem2 e) {
handleProblem();

}

4.5.1 Multi-Catch: Specification

The catch clause may use a union type as the type of its declared exception
parameter. A union type is a list of types, that are not in a subtype (or
supertype) relation to each other, separated by the | character.

A catch clause used as described above is called a multi-catch clause and
its exception parameter is implicitly final. The catchable exception types of
a multi-catch clause are the types specified in the union type, but the effective
type of the exception parameter is computed by an algorithm known as lub
in the Java Language Specification. The type of an exception parameter that
has a declared union type of T1|T2| · · · |Tn is lub(T1, T2, · · · , Tn) [5, p. 402].

4.5.2 Multi-Catch: Implementation Details

Since the union type was only used in the multi-catch clause, it was not use-
ful to create a new AST node type to represent union types — at least not a
type that could be used in the already existing CatchClause node type. In-
stead, the CatchParameterDeclaration node type was added to represent
exception parameters in multi-catch clauses. Due to fundamental incompati-
bilities between node types ParameterDeclaration (used in CatchClause)
and CatchParameterDeclaration, there was no simple way to make the
latter a subclass of the former. Since CatchClause could not represent a
multi-catch, the MultiCatch node type was added for that purpose.

While CatchParameterDeclaration and ParameterDeclaration had
nearly nothing in common, CatchClause and MultiCatch did have very
much in common. Most attributes and methods would be exactly the same
for both these node types yet MultiCatch could not inherit from Catch-
Clause because they had different exception parameter children.

In order to not create a lot of duplicated code, and to simplify the imple-
mentation of the multi-catch feature, CatchClause was refactored so that it
became an abstract superclass to the new BasicCatch node type which took
the old role of CatchClause. With this refactoring applied to JastAddJ it
was simple to implement the MultiCatch node type as a subclass of Catch-
Clause. All computations that were identical between MultiCatch and
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BasicCatch were placed in CatchClause — only a few attributes needed
to be implemented for MultiCatch.

The lub algorithm was already implemented in the Java 5 extension of
JastAddJ, as this algorithm is part of the type inference for method invoca-
tions that was added in Java 5. Using the lub algorithm in the type analysis
of the MultiCatch node type was quite simple.

4.5.3 Multi-Catch: Alternative Implementation

The way multi-catch was implemented splits the CatchClause node type
into BasicCatch and MultiCatch. However, it could have been enough
to just use a more general CatchParameterDeclaration in the original
CatchClause, but that would in effect require implementing the multi-catch
feature, yet without it being used, in the core version of JastAddJ.

The chosen implementation only refactored the core JastAddJ AST def-
initions, while the extension adds all the required new attributes and node
types.

4.6 More Precise Rethrow

A rethrown exception would in Java 6 and earlier versions of the language
require exceptions of the same type as the exception parameter to be handled
by an enclosing try-statement or declared to be thrown by the enclosing
method. For example, in the following code snippet it is obvious that only
a FileNotFoundException can be thrown by the method m, yet the more
general exception type IOException must be declared to be thrown since
that is the declared type of the exception parameter e:

// Java 6 & earlier:
void m() throws IOException {

try {
throw new FileNotFoundException();

} catch (IOException e) {
throw e;// rethrow of IOException

}
}
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In Java 7, type analysis of rethrown exception parameters is refined, so
the throws declaration of m can be made more specific:

// Java 7:
void m() throws FileNotFoundException {

try {
throw new FileNotFoundException();

} catch (IOException e) {
throw e;// rethrow of FileNotFoundException

}
}

4.6.1 More Precise Rethrow: Specification

A final or effectively final exception parameter is subject to more precise
exception analysis in the context of a throw statement. Only the exception
types that are catchable by the corresponding catch clause may be rethrown.

Example In method foo below there is an unreachable catch clause which
in Java 6 or earlier would have been considered reachable by the compiler:

class E1 extends Exception {}
class E2 extends Exception {}
public void foo() {

try {
throw new E1();

} catch (Exception e) {
try {

throw e;
} catch (E1 e1) {
} catch (E2 e2) {

// unreachable
}

}
}

A Java 7 compiler will find that since the exception parameter e is effec-
tively final (it is never assigned to), and the corresponding catch clause
can only catch exceptions of type E1, the throw e; statement throws an
exception of type E1 and thus the second catch clause of the inner try
statement is unreachable!
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4.6.2 More Precise Rethrow: High-Level Design

The computed type of a throw statement needed to be altered for throw
statements that rethrow an effectively final exception parameter. However,
the effective type of the exception parameter must remain unchanged during
all other type-dependent computations such as method lookup etc.

In the above example, the type of e is still Exception yet only exceptions
of type E1 can be thrown by the throw e; statement.

This dichotomy was resolved by adding a new attribute to handle the
thrown exception types of a throw statement separately.

4.6.3 More Precise Rethrow: Implementation Details

The throwTypes and effectivelyFinal attributes were the main at-
tributes added in the implementation of the more precise rethrow feature.

The effectivelyFinal attribute was added to the ParameterDec-
laration node type which represents exception parameters of uni-catch
clauses. An exception parameter is effectively final either if it is declared
final or if it is not assigned to in the scope of its catch block. The exception
parameter of a multi-catch clause is always effectively final.

Relevant exception checking attributes and methods were modified to
use the throwTypes attribute which was added to the Expr node type. For
ParameterDeclaration and CatchParameterDeclaration this attribute
returns the list of (re-)throwable types.

4.7 Safe Varargs

Unchecked warnings were added in Java 5. They are generated to help the
programmer prevent heap pollution. [15] Since Java 5, calling a method with
a variable arity parameter of non-reifiable type would generate an unchecked
warning at the method invocation. These unchecked warnings could be sup-
pressed using the @SuppressWarnings annotation at the method invocation.

In Java 7 there is an additional unchecked warning at the method decla-
ration, but the programmer can use the @SafeVarargs annotation to inform
the compiler that the declaration is safe and can not cause heap pollution,
thus silencing the warnings both at the declaration and all call sites.

4.7.1 Safe Varargs: Specification

The declaration of a method with a non-reifiable parameter which also has
variable arity will cause the compiler to report an unchecked warning. This
warning can be suppressed with the @SafeVarargs annotation, which also
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suppresses the related unchecked warnings raised by all invocations of the
method:

@SafeVarargs
public static <T> void foo(T... a) { }

The @SafeVarargs annotation may not be used on anything that is not
a method declaration with a generic variable arity parameter.

4.7.2 Safe Varargs: High-Level Design

The safe varargs feature was simple to implement in JastAddJ. There were
attributes already available to determine if a method had variable arity pa-
rameters, and whether the method invocation was affected by the @Sup-
pressWarnings("unchecked") annotation. The only things that needed
to be added were attributes to compute if an argument was reifiable, and
whether or not the method declaration used the @SafeVarargs annotation.

Even though attributes were available in JastAddJ to handle the @Sup-
pressWarnings annotation, no unchecked warnings were actually generated.
So in order to fulfill the entire specification of the safe varargs feature, the
unchecked warnings that were missing in JastAddJ were also implemented.

5 Discussion

The implementation of JJ7 was mostly straightforward: for most features
it was simple to find the relevant attributes and figure out what needed to
be modified or added. Other features required significantly more work. I
spent most time on the Diamond feature. This feature utilises the already
implemented type inference for generic methods in JastAddJ. It was difficult
to understand how that type inference worked — there are very many at-
tributes concerning type analysis, and their dependencies are complex. The
use of non-terminal attributes makes debugging difficult due to the way they
can dynamically alter the AST at any time during execution.

Even though there are definitely parts of JastAddJ that are far from
trivial to understand, I suspect that it is a simpler task for someone who
is already familiar with the JastAdd system to implement a new feature in
JastAddJ than it would be to implement the same feature in a javac-like
system.

I believe that using RAGs in most cases makes a compiler easier to un-
derstand without concious effort on the developers’ part. However there are
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some problems such as the type analysis in JastAddJ that require great care
in order to make the attribute design as simple as possible. A simple design
reduces the cost of maintaining or extending the code.

The greatest benefits of using JastAdd is the concise syntax and extensi-
bility of JastAdd code. Changing attributes and other inter-type declarations
can be done very easily by adding an additional aspect file. New AST defini-
tions can also be added modularly with JastAdd, but changing existing AST
definitions may break compatibility with previous extensions.

An obvious drawback for JastAdd developers is the lack of mature devel-
oper tools such as a powerful IDE and debugger. It can be difficult to nav-
igate JastAdd source code, particularly when looking for the declaration or
implementation of specific attributes or inter-type declarations. Debugging
can be done using a regular Java debugger, but requires stepping through
the generated attribute evaluation code in order to find relevant attribute
code.

5.1 Combining Modules

During the implementation I strived for high modularization, even trying to
modularize individual features in JJ7. In some cases it was possible to de-
velop individual features independently of others in separate modules, how-
ever there were cases where there was some interdependence between fea-
tures. For example, the refactoring that was used for the CatchClause node
type during the implementation of the multi-catch feature affected the imple-
mentation of the try-with-resources feature. The multi-catch feature could
have been implemented without this refactoring but then the overall quality
of the implementation would have suffered — several duplicated methods
would have been added.

There are certainly cases of interdependent features in the implementation
of Java 5 in JastAddJ. For example, the auto-boxing feature causes an edge
case in the implementation of the enhanced for loop which needs to check
explicitly for auto-boxed types and unbox them. Again, those features could
probably be separated with some smart refactoring to the core JastAddJ
compiler.

5.2 Problems Encountered

During the implementation of the Java 7 language features, some problems in
both the tools used to build JastAddJ and in JastAddJ itself were discovered.

These problems are documented in the following sections.
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5.2.1 Bugs in JastAddJ

Various bugs were identified in JastAddJ and fixed during the development
of the Java 7 extension. Although several of these bugs were not critical for
JJ7, fixing them was taken as an opportunity to learn more about JastAddJ.

1. Exception handling was not checked for ClassInstanceExpr: Jast-
AddJ did not check that exceptions thrown by a class instance expres-
sion were caught.

2. A code generation bug in the enhanced for loop caused JastAddJ
to output defect bytecode if the enhanced for loop iterated over an
Iterable object.

3. Unchecked conversion warnings were not raised by JastAddJ. Some
of these warnings were added together with the unchecked warnings
required by the safe varargs feature.

4. There was an error that caused certain throw statements to be incor-
rectly type checked. JastAddJ would for example not accept any type
of catch clause for the following throw statement:

throw (System.currentTimeMillis() % 2 == 0) ?
new E1() : new E2();

5. The @Override annotation’s semantics was changed in Java 6. Jast-
AddJ needed to be updated to reflect this change [1].

5.2.2 Problems With Beaver

The Beaver parser generator is used to generate JastAddJ’s parser (see sub-
section 2.5). It has an option to optimize the generated parser’s parsing
table. This removes states in the parsing table that correspond to multiple
productions sharing the same lookahead.

Mysterious parse errors started appearing during the implementation of
try-with-resources, when the test cases were compiled. These parsing prob-
lems ceased when the optimization option in Beaver was turned off.

Another error in Beaver was discovered at a later time, when parsing
some Java programs would cause the generated parser to reliably crash. After
updating Beaver to version 9.7, those crashes also disappeared.
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6 Evaluation

In this section the results of benchmarking JastAddJ against OpenJDK’s
javac are presented.

In subsection 6.1 the size of the code base for JJ7 is compared to that of
javac.

In subsection 6.2 the programs used to measure compile time and memory
usage are presented, and in subsection 6.3 the details of the environment and
method used to obtain these measurements are listed.

Section 6.4 contains the benchmark results. The results of the benchmark
help to answer the question about the efficiency of the implementation of JJ7.

6.1 Implementation Size

The Source Lines of Code (SLOC) metric is used to compare implementation
sizes. SLOC counts were obtained using the SLOCCount program by David
A. Wheeler and represent physical lines of source code, excluding comment
lines and empty lines.

The generated Java code of JastAddJ is about 78 thousand lines, but the
JastAdd source files used to generate JastAddJ are only 25 thousand SLOC,
and of those the JJ7 extension is only 2.2 thousand lines.

The SLOC counts of JastAddJ (non-generated code) and javac are listed
in figure 19. Listed in this table is also the percent increase in number of
lines of code since the previous version of each compiler. Note that there is
no Java 6 version of JastAddJ since the Java 5 version also supports Java 6.
Also note that the increase for JastAddJ is lower than that for javac, between
the current and previous versions.

The fact that the Java 7 implementation in JastAddJ required a lower
percent increase in code size than javac indicates that fewer things had to be
added in JastAddJ to support the Java 7 features. This supports our claim
that JastAddJ is simpler to extend than javac-like compilers.

Compiler SLOC increase
OpenJDK 6 b24 47397 –
OpenJDK 7 b146 55130 16.3%
JastAddJ 1.5 R20120306 23097 –
JastAddJ 7 R20120306 25271 9.4%

Figure 19: Source Lines of Code (SLOC) counts for various versions of JastAddJ
and javac.
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6.2 Benchmark Programs

The following benchmark programs were compiled by JastAddJ and javac in
order to compare the compile time and memory usage of the two compilers:

Name Version SLOC Description
antlr 2.7.2 34615 Aspect programming system
clojure 1.3.0-RC0 35831 Compiler for the clojure language
jastaddj R20111208 87342 JastAddJ
javac jdk7-b146 55130 OpenJDK 7 javac
jdepend 2.9.1 2460 Java package dependency analyzer
jsilver 1.0.1-SNAP 30164 HTML template system
jython 2.2alpha1 76368 A Python environment in Java
lucene 3.0.1 45337 Text search engine

Figure 20: Benchmark programs

The source code for the benchmark programs was written in Java version
6 or earlier. None of them used Java 7 features, although the javac benchmark
program does depend on the Java 7 class library. At the time the benchmark
programs were selected we did not find any other suitable Java 7 programs.

6.3 Measurement Details

The compilation time and memory usage measurements were obtained by
running the benchmarks in a “hot” client-mode JVM. The compilers were
programatically invoked for a warm-up routine of five invocations with just-
in-time (JIT) compilation enabled, then an additional fifteen invocations
with JIT disabled. After the warm-up runs the compiler was invoked fifty
times, while measuring the total compile time and memory usage for each
invocation. Memory usage was estimated by taking the current heap size
before each invocation and subtracting that number from the current heap
size after the invocation. The arithmetic mean of the fifty measurements are
displayed in the result tables in the following section.

The machine used to run the benchmarks was an Intel R© CoreTM2 CPU
running at 1.83GHz with 2048 KiB cache and 2 GiB primary memory. The
test machine was running Ubuntu 12.04.1. The JVM used was an OpenJDK
7 (update 3) JVM with the maximum heap size set to 2 GiB.
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The additional command line arguments for the JVM used to run Jas-
tAddJ and javac were:

-Xms128m -Xmx2048m -XX:ReservedCodeCacheSize=256m

JastAddJ 7 (build R20120306) and OpenJDK 7 (update 3) javac were
used to compile the benchmark programs. The default options for both
compilers were used, and the compiled programs were not executed.

6.4 Benchmark Results

Figure 21 lists the average compile time and memory usage for each bench-
mark program and compiler combination. The compile time results are also
plotted in figure 22. Figure 23 plots the JastAddJ compile time as a percent-
age of the corresponding compile time using javac for the same benchmark
program.

Benchmark javac jastaddj
s MiB s (% of javac) MiB

antlr 1.32 50 2.62 (199%) 61
clojure 3.53 61 3.50 (99%) 110
jastaddj 4.15 102 8.14 (196%) 214
javac 2.43 137 5.43 (224%) 144
jdepend 0.14 47 0.58 (401%) 35
jsilver 1.05 84 2.85 (270%) 71
jython 3.48 91 6.84 (197%) 149
lucene 1.76 95 4.98 (282%) 123

Figure 21: Benchmark result summary
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As can be seen in figure 23, the compile time using JastAddJ is between
100% and 300% that of the javac compile time for all benchmarks except
jdepend. There is no clear relationship between the slowdown and the num-
ber of source lines of code. For JastAddJ it appears that the compile time is
in a linear relationship to the SLOC count. The javac compile time is also
nearly linear, if we ignore clojure.

It is surprising that clojure takes so long time to compile with javac.
This could perhaps be attributed to some coding pattern used extensively
in clojure which javac does not compile efficiently. JastAddJ uses the same
time to compile clojure, but with just less than twice the memory usage.

Previous tests with the Java 1.4 version of JastAddJ and JDK indicated
that JastAddJ was just less than three times slower than javac. The data
gathered in this thesis suggests that the performance gap in compilation time
between JastAddJ and javac has not changed significantly. [3] No special
optimizations were used in the implementation of JJ7, on the other hand
nearly all of the computations and nodes used for a Java 7 feature will only
be used if the feature is actually used in the compiled program. We ran the
same benchmarks on the Java 1.5 version of JastAddJ and saw no significant
difference in the compile time and memory usage compared to the Java 7
version.

7 Conclusion

In this thesis we have presented the implementation of JJ7, an extension
to JastAddJ adding support for the new Java 7 language features listed in
subsection 2.1. The design decisions and approaches used to implement each
feature were presented in section 4. My reflections on the implementation
work and modularity using JastAdd are listed in section 5. Finally, in sec-
tion 6 I compared JastAddJ to javac, measuring implementation size, compile
time and memory usage.

The first main question that was asked in the introduction to this thesis
is how modular the implementation would be. As mentioned in section 5, the
features are not fully modular — i.e. separate features can not be selected
independently of each other. However, perfect modularity would require pre-
designed support for the particular features of Java 7. Despite this JJ7 did
not require many refactorings to JastAddJ and with those changes imple-
mented it functions as a separate module.

The question of correctness can not fully be answered. There are currently
no known bugs in the implementation of the Java 7 features, but as new bugs
are very hard to anticipate it is not possible to say that the implementation
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is correct. Judging only by the limited unit tests discussed in subsection 3.1,
the implementation is also complete. Oracle’s test suite to validate Java
compilers was not used and so we can make no claims as to the conformance
of JastAddJ with the Java 7 specification.

Finally, we have the question of efficiency. As seen in section 6, the
JastAddJ compiler is approximately 100% to 300% slower than javac for large
programs. JastAddJ was just below a factor three slower than javac when the
Java 1.4 versions of each compiler were compared. It is not surprising that
the difference in compile time stayed roughly the same. The result shows
none the less that JastAddJ has not become over-encumbered by the new
features.

7.1 Future Work

The following are potential areas for future work, based on JJ7:

• The upcoming Java version, Java 8 could be implemented in JastAddJ,
using JJ7.

• The evaluation of JastAddJ in this thesis is very basic. A more in-depth
evaluation using more Java compilers to compare JastAddJ against,
and more benchmark programs, would be very valuable. In particular
it would be interesting to see what the rather large variations in compile
time, between different test programs, are caused by. The results of
further studying the performance of JastAddJ could be used to optimize
JastAddJ for decreased compile time or memory usage.

• There is a refactoring opportunity in JJ7: the strings in switch feature
could be implemented using a nonterminal attribute. This would re-
quire an unnamed temporary node type to be added to the AST (cf.
4.2).

• There exist many extensions to JastAddJ, built using the Java 5 ver-
sion, that could be updated to utilise the Java 7 features and core
JastAddJ refactorings implemented in JJ7. Such extensions include
dataflow analysis, a java-to-C cross compiler, and many other research
projects and applications.

• Obtaining a license for Oracle’s compatibility test suites for Java would
be very valuable in order to test the completeness and correctness of
JJ7 with regards to the Java 7 specification.
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Appendices
A Obtaining JastAddJ

JastAddJ is available via anonymous SVN at http://svn.cs.lth.se/svn/
jastadd-oxford/projects/branches/JastAddJ-stable/.

The compiler can be built using either the Apache Ant script build.-
xml in the root directory of JastAddJ, or in any of the subdirectories. Each
subdirectory corresponds to one module of JastAddJ (subsection 2.2).

B Strings-in-Switch Tests

The two bytecode instructions lookupswitch and tableswitch can be used
to implement the switch statement. JastAddJ generates the switch in-
struction that produces the smallest bytecode for any given switch state-
ment. The size of lookupswitch is 4 + n ∗ 8 bytes, where n is the number
of case labels. The size of tableswitch is 8 + (h− l + 1) ∗ 4 bytes, where
h is the value of the highest case label and l is the value of the lowest.

The JJ7 test suite tests the code generation for both these instructions.
In order to test both, the test cases must be cleverly constructed so that it
is known which instruction will be generated. This can be done by looking
at the hash codes of the strings used in the case labels.

For example the following switch statement, when compiled with Jas-
tAddJ, will produce a lookupswitch since there are few case labels, but
the difference in their values is large (h > 108, l = 97).

switch (value) {
case "a":

break;
case "b":

break;
case "c":

break;
case "smurf":

break;
}
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The next statement will produce a tableswitch (size = 24 bytes) rather
than a lookupswitch (size = 36 bytes):

switch (value) {
case "a":

break;
case "b":

break;
case "c":

break;
case "d":

break;
}
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